RAPPORT

GULLVIKA SETTEFISKANLEGG
BJUGN KOMMUNE
SØR-TRØNDELAG FYLKE

Søknad om konsesjon for uttak av vann etter Vannressursloven
Søknad om konsesjon for uttak vann til Gullvika settefiskanlegg

Marine Harvest Norway AS ønsker å utnytte vann fra Teksdalselva i Bjugn kommune i Sør-Trøndelag fylke i Gullvika settefiskanlegg, og søker herved om følgende tillatelser:

Etter vannressursloven, jf. § 8, om tillatelse til:

- uttak av vann til Gullvika settefiskanlegg i Bjugn kommune, Sør-Trøndelag

Nødvendig opplysninger om tiltaket fremgår av vedlagte utredning.

Med vennlig hilsen

Marine Harvest Norway AS

v/ Ørjan Tveiten
Adresse: Postboks 4102 Sandviken, 5835 Bergen
E-post: Orjan.Tveiten@marineharvest.com
Telefon: 905 53 008
Rapport

Konsesjonssøknad, Gullvika settefiskanlegg

<table>
<thead>
<tr>
<th>Rapport nr.: 583791 - 1</th>
<th>Oppdrag nr.: 583791</th>
<th>Dato: 29.4.2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunde: Marine Harvest Norway AS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sammendrag:

Marine Harvest planlegger å etablere et landbasert anlegg for produksjon av smolt i Gullvika i Bjugn kommune, basert på vannbesparende resirkuleringsteknologi. Det søkes om konsesjon til et begrenset vannuttak fra Teksdalselva, oppstrøms Teksdal kraftverk.

Fra inntaket vil vannet føres i nedgravd PE-rør langs vestsiden av Teksdalselva til utløpet i sjøen og videre til Gullvika. Total lengde på vannveien blir ca. 4200 m. Diameteren på røret er planlagt til 560 mm. Vannutaket planlegges til 10 m³/min (0,17 m³/s) jevnt over året. Middelvannføringen i Teksdalselva er 5,28 m³/s. Uttaket tilsvarer 3,4 % av middelvannføringen i perioden 1987-2011. I sommerhalvåret tilsvarer uttaket ca. 4,3 % av sesongmiddel og i vinterhalvåret ca. 2,7 % av sesongmiddel. Inntaket til settefiskanlegget vil bli oppstrøms Teksdal kraftverk. Eksisterende reguleringer til Teksdal kraftverk benyttes. Det skal ikke etableres nye reguleringer, overføringer eller dammer.

Vannføringen på berørt elvestrekning nedstrøms utløpet av kraftverket, vil tilsvare driftsvannføringen ved kraftverket fratrukket forbruket i settefiskanlegget. I tørrere perioder benyttes en omløpsventil i kraftstasjonen, slik at vannføringen ved kraftverket ikke underskrider kapasiteten på omløpsventilen som er oppgitt til 0,9 m³/s. Marine Harvest tar i dag ut 20 m³/min (0,33 m³/s) til eksisterende settefiskanlegg på Leikvang. Vannet tas inn direkte fra Teksdalsvatnet. Samlet kapasitet på inntakene i Teksdalsvatnet blir 30 m³/min. I situasjoner med driftsstans ved kraftverket, skal reservekapasiteten i inntaket benyttes til å ta ut vann til Gullvika settefiskanlegg.

Verdi og konsekvansvurdering for det enkelte fagtema som omhandler biologisk mangfold og miljø, er oppsummert i tabell under. Det forventes ikke mer enn liten negativ konsekvans for noe miljotema.

<table>
<thead>
<tr>
<th>Fagtema</th>
<th>Dagens verdi</th>
<th>Konsekvens</th>
<th>Søker/konsulents vurdering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akvattisd miljø</td>
<td>Stor</td>
<td>Liten negativ</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Terrestrisk miljø</td>
<td>Middels</td>
<td>Liten negativ</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Landskap og INON</td>
<td>Liten til middels</td>
<td>Liten negativ</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Kulturminner og kulturmiljø*</td>
<td>Middels</td>
<td>Ubetydelig</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Landbruk</td>
<td>Stor</td>
<td>Ubetydelig</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Ferskvannsressurser</td>
<td>Middels</td>
<td>Ubetydelig</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Brukerinteresser</td>
<td>Stor</td>
<td>Liten negativ</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Reindrift</td>
<td>Ingen</td>
<td>Ingen</td>
<td>Søker & konsulents</td>
</tr>
</tbody>
</table>

Utarbeidet av:

Håkon Gregersen, Ole Kristian Haug Bjølstad og Sigri Scott Bale

Kontrollert av:

Per Ivar Bergan og Åsta Gurandsrud Hestad

Oppdragsansvarlig / avd.:

Wolf Marchand/ Energi, Trondheim

Sign.:
Innhold

1 Innledning ... 3
 1.1 Om søkeren .. 3
 1.2 Begrunnelse for tiltaket ... 3
 1.3 Geografisk plassering av tiltaket .. 3
 1.4 Dagens situasjon og eksisterende inngrep .. 4

2 Beskrivelse av tiltaket ... 6
 2.1 Hoveddata .. 6
 2.2 Teknisk plan for det søkte alternativ .. 6
 2.3 Fordeler og ulemper ved tiltaket .. 12
 2.4 Arealbruk og eiendomsforhold .. 12
 2.5 Forhold til offentlige planer .. 12

3 Virkning for miljø, naturressurser og samfunn ... 14
 3.1 Hydrologi (virkninger av utbyggingen) ... 14
 3.2 Simulering av tørrfall .. 15
 3.2.1 Metode ... 15
 3.2.2 Resultat .. 16
 3.2.3 Leveområder for elvemusling .. 22
 3.3 Vanntemperatur, isforhold og lokalklima .. 24
 3.3.1 Dagens situasjon .. 24
 3.3.2 Konsekvensvurdering .. 24
 3.4 Grunnvann, flom og erosjon .. 25
 3.4.1 Dagens situasjon .. 25
 3.4.2 Konsekvensvurdering .. 26
 3.5 Metode for verdi- og konsekvensvurdering av biologisk mangfold 26
 3.6 Akvatisk miljø ... 27
 3.6.1 Artsomtale elvemusling ... 27
 3.6.2 Artsomtale ål .. 28
 3.6.3 Metode for akvatiske faunautundersøkelser ... 28
 3.6.4 Resultater av undersøkelse av tetthet og utbredelse av elvemusling 28
 3.6.5 Resultater fra elektrofiskeundersøkelse i Teksdalselva 31
 3.6.6 Konsekvensvurdering for akvatisk fauna ... 33
 3.7 Terrestrisk miljø ... 34
 3.7.1 Dagens situasjon ... 34
 3.7.2 Konsekvensvurdering ... 37
 3.8 Landskap og inngrepsfrie naturområder .. 37
 3.8.1 Dagens situasjon ... 37
 3.8.2 Konsekvensvurdering ... 37
 3.9 Kulturminner ... 38
 3.9.1 Dagens situasjon ... 38
 3.9.2 Konsekvensvurdering ... 39
 3.10 Landbruk ... 40
 3.10.1 Dagens situasjon ... 40
 3.10.2 Konsekvensvurdering .. 40
 3.11 Ferskvannsressurser .. 40
 3.11.1 Dagens situasjon .. 40
3.11.1 Konsekvensvurdering .. 40
3.12 Brukerinteresser .. 40
 3.12.1 Dagens situasjon .. 40
 3.12.1 Konsekvensvurdering .. 41
3.13 Samiske interesser .. 41
3.14 Reindrift ... 41
3.15 Samfunnsmessige virkninger ... 41
3.16 Konsekvenser ved brudd på dam .. 41
3.17 Oppsummering ... 42
4 Avbøtende tiltak .. 43
5 Referanser ... 44
6 Vedlegg til søknaden .. 47
1 Innledning

1.1 Om søkeren
Tiltakshaver for Gullvika settefiskanlegg er Marine Harvest Norway AS, Postboks 4102 Sandviken, 5835 Bergen, organisasjonsnummer 959352887.

Marine Harvest Norway er en del av konsernet Marine Harvest ASA som er notert på Oslo Børs.

Marine Harvest Norway har delt aktivitetene i Norge opp i fire regioner: Sør, Vest, Midt og Nord. Omsøkt tiltak ligger i region Midt, som strekker seg fra Averøy i sør, til Fosnes i nord. Regionen har ca. 230 ansatte, og et slaktevolum på ca. 47 000 tonn årlig. Regionen har virksomhet ved 19 lokaliteter i 8 kommuner.

For ytterliggere informasjon, se www.marineharvest.com/no.

1.2 Begrunnelse for tiltaket
Bakgrunn for anleggsetableringen, er ønske om å utnytte naturressursene i området til landbasert smoltproduksjon. I en stadig økende lakseindustri behøves mer settefisk.

Etablering av nye settefiskanlegg gir mulighet for en tidsriktig produksjon der hensyn til miljø kan ivaretas bedre enn ved opprusting av gamle anlegg. Dette gjelder både utslipp, rømming av fisk og sykdomsspredning. Resirkuleringsanlegg gir bedre utnyttelse av vannforbruk og energi, i tillegg til bedre vekst og overlevelse på fisk.

1.3 Geografisk plassering av tiltaket
Vannutaket til settefiskanlegget er planlagt i Teksdalselva (vassdragsnummer 134.B), Bjugn kommune, Sør-Trøndelag. Regional plassering er vist i Figur 1-1. Oversiktskart og detaljkart er vist i vedlegg 1 og 2.

Bjugn kommune er en kystkommune på Fosenhalvøya, og har ca. 4600 innbyggere. Administrasjonssenteret er Botngård. Prosjektområdet ligg ca. 11 km nordøst for Botngård.
1.4 Dagens situasjon og eksisterende inngrep

Nedbørfeltet til Teksdalsvassdraget består stort sett av skog- og jordbruksområder. Skog og dyrket mark utgjør over 60 % av nedbørfeltet. I øvre deler av feltet er det snaufjell (ca.10 % av nedbørfeltet) og fjelltopper opp mot 500 moh.

Et fall i Teksdalselva fra Teksdalsvatnet er i dag utnyttet til kraftproduksjon gjennom Teksdal kraftverk. Kraftverket eies av FosenKraft AS, og har vært i drift siden 1941. Installert effekt er 3,0 MW, og midlere årlig produksjon er 12 GWh. Fra inntaket i Teksdalsvatnet består vannveien av sprengt tunnel til kraftstasjonen. Nedbørfeltet til inntaket er 105 km², og har en middelvannføring på 5,3 m³/s. Utover Teksdalsvatnet er Laugen, Hildremsvatnet og Gjøljsavatnet magasin for kraftverket. Teksdalsvatnet kan reguleres 3,8 m, og utgjør et magasin på 11,0 mill. m³. I forbindelse med reguleringen er det bygget en dam ved utløpet av Teksdalsvatnet.

Teksdalselva renner gjennom et jordbruksområde. Langs Teksdalselva er det gardsbruk langs begge sider av elva.
Marine Harvest tar årlig ut 10 mill. m³ fra Teksdalsvatnet til eksisterende stamfiskanlegg på Leikvang. I gjennomsnitt tas det ut 20 m³/min (0,33 m³/s). Uttaket ligger under gjennomsnittet i perioden desember til slutten av mai, og over gjennomsnitt fra juni til november. I forbindelse med tiltaket ligger det to nedgravde rør langs østsiden av Teksdalselva.

Vann til stamfiskanlegget tas inn fra to inntak i Teksdalsvatnet; et overflateinntak med kapasitet 20 m³/min (0,33 m³/s) og inntak på 27 m dyp med kapasitet 9 m³/min (0,15 m³/s).

Ved utvidelser*:

Omsøkte tiltak er ikke en utvidelse av eksisterende uttak fra Teksdalsvatnet, men ett nytt uttak fra ett inntak like oppstrøms Teksdal kraftverk.

Siden vannutmatket til stamfiskanlegget på Leikvang tok til i 1986 har det aldri vært problem med å få nok vann til anlegget. Elva nedstrøms kraftverket har i denne perioden aldri vært helt tørr (personlig meddelelse, R. Simonsen). NVEs målestasjon nedstrøms kraftverket viser at laveste døgnverdi i perioden 1987-2011 er 0,7 m³/s.
2 Beskrivelse av tiltaket

2.1 Hoveddata

Hoveddata for det planlagte smoltanlegget er presenter i Tabell 2-1.

Tabell 2-1 Hoveddata, Gullvika settefiskanlegg

<table>
<thead>
<tr>
<th>Tilsig</th>
<th>Gullvika settefiskanlegg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nedbørfelt</td>
<td>km²</td>
</tr>
<tr>
<td>Årlig tilsig til inntaket</td>
<td>mill.m³</td>
</tr>
<tr>
<td>Spesifikk avrenning</td>
<td>l/s/km²</td>
</tr>
<tr>
<td>Middelvannføring normalår</td>
<td>m³/s</td>
</tr>
<tr>
<td>Middelvannføring terrår (2003)</td>
<td>m³/s</td>
</tr>
<tr>
<td>Alminnelig lavvannføring</td>
<td>m³/s</td>
</tr>
<tr>
<td>5-persentil sommer (1/5-30/9)</td>
<td>m³/s</td>
</tr>
<tr>
<td>5-persentil vinter (1/10-30/4)</td>
<td>m³/s</td>
</tr>
</tbody>
</table>

Settefiskanlegget

Inntak**	moh.
Avløp	moh.
Lengde på berørt elvestrekning	km
Vannledning	m
Vannledning, diameter	mm
Maksimalt antall smolt	stk

MAGASIN***

Magasinvolum	mill. m³	11,0**
HRV	moh.	49,0
LRV	moh.	45,2

*NVEs avrenningskart for normalperioden 1961-1990.

**settefiskanleggets inntak blir oppstrøms kraftstasjonen på kote 8. Trykket ved inntaket tilsvarer høydeforskjellen fra inntaket til kraftverket på mellom kote 49 og kote 45,2 og kraftstasjonen på kote 8.

***utnytter eksisterende magasin i Teksdalsvatnet ved å ta inn vann oppstrøms Teksdal kraftverk etter avtale med FosenKraft AS.

2.2 Teknisk plan for det søkte alternativ

Hydrologi og tilsig (grunnlaget for dimensjoner av vannuttaget)

Fra 1954 og frem til i dag, har NVEs målestasjon 134.3 Teksdal målt vannføring i Teksdalselva i undervannet til Teksdal kraftverk. Nedbørfeltet til målestasjonen er kraftig regulert, men stasjonen måler den totale vannføringa i vassdraget. Driftsvannføring ved Teksdal kraftverk sammen med overløp og tilsig fra restfeltet gir vannføringa i vassdraget (NVE, Hydra II, stasjonskommentar).

Nedbørfeltet til Teksdalselva inneholder fire reguleringsmagasin, se Tabell 2-2. Effektiv sjøprosent i feltet er 8,1 % (NVEs Lavvannskart). Høy sjøprosent og reguleringsmagasin bidrar til stor demping i nedbørfeltet.
Tabell 2-2 Magasin i Teksdal kraftverks nedbørfelt

<table>
<thead>
<tr>
<th>Regulerte magasiner</th>
<th>Teksdal kraftverk</th>
<th>Magasin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teksdalsvatnet*</td>
<td>3,8 m</td>
<td>11,0 mill. m³</td>
</tr>
<tr>
<td>Gjølgavatnet**</td>
<td>4,0 m</td>
<td>18,5 mill. m³</td>
</tr>
<tr>
<td>Hildremsvatnet***</td>
<td>3,5 m</td>
<td>3,5 mill. m³</td>
</tr>
<tr>
<td>Laugen***</td>
<td>4,5 m</td>
<td>4,0 mill. m³</td>
</tr>
</tbody>
</table>

*i i praksis er aldri vannstanden ned mot LRV grunnet bunnforhold ved bru oppstrøms inntak.
**i praksis er vannstanden aldri under kote 48,4 (utnytter 3,0 m regulering) grunnet bunnforhold oppstrøms dam.

Samlet volum i magasinene er 37 mill. m³, tilsvarende 22 % av årlig tilsig fra feltet.

Fra 1986 er det tatt ut 5 mill. m³/år fra Teksdalsvatnet til stamfiskanlegget på Leikvang. I 2010 ble det bygd en ny stamfiskhall og det ble etablert ytterligere reservevannledning. Samlet vannkapasitet økte da til 10 mill. m³/år. På bakgrunn av dette er data fra NVEs målestasjon 134.3 Teksdal fra perioden 1987-2011 benyttet i hydrologiske analyser.

På grunnlag av NVEs avrenningskart for normalperioden 1961-1990 og data fra NVEs målestasjon 134.3 Teksdal i perioden 1987-2011 er følgende statistikk og kurver utarbeidet for Teksdalselva:

- Flerårsstatistikk, døgnverdier
- Flerårsstatistikk, månedsmiddel og årlig gjennomsnitt
- Flerårsstatistikk, flerårsmiddel
- Varighetskurver, hele året
- Varighetskurver, vintersesong
- Varighetskurver, sommersesong

Flerårsstatistikk, månedsmiddel og årlig gjennomsnitt er vist i Figur 2-1 og Figur 2-3. Figur 2-2 viser variasjon i produksjon over året ved Teksdal kraftverk. De øvrige kurvene er vist i vedlegg 3.
Figur 2-1 Månedsmiddel og middelverdi, 1987-2011

Snittproduksjon pr måned 1976-2008

Figur 2-2 Gjennomsnittlig produksjon ved Teksdal kraftverk pr. mnd. 1976-2008 (kilde: Manøvreringsreglement Teksdal kraftverk, FosenKraft AS)
Figur 2-3 Flerårmiddel, variasjon fra år til år.

I det tørreste året (årsvolum) er middelvannføringen 3,55 m³/s. Uttaket til settefiskanlegget tilsvarer 5% av dette. 5% er den høyeste andelen av middelvannføringen som tas inn i perioden 1987 til 2011. Minste målte dognmiddelvannføring i perioden 1987-2011 er 0,7 m³/s. Etter installasjon av omløpsventil i Teksdal kraftstasjon i november 2011, skal vannføring nedstrøms kraftstasjonen ikke underskride kapasiteten på omløpsventilen. Bestilt kapasitet på ventilen var 0,4 m³/s, men målinger viser at den har kapasitet på ca. 0,9 m³/s (pers. med., G. Svendsen).

Se "Skjema for dokumentasjon av hydrologiske forhold" for ytterligere informasjon.

Inntak, ev. reguleringsmagasin og overføring

I forbindelse med at turbin og generator høsten 2012 ble fornyet ved Teksdal kraftverk, ble det installert en flensanslutning på 800 mm i forkant av kraftstasjonen. Inntaket til settefiskanlegget vil bli etablert ved flensanslutning.

Det vil ikke etableres nytt reguleringsmagasin, ny dam eller nye overføringer i forbindelse med tiltaket.

Reservevannløsning etableres i forbindelse med eksisterende inntak i Teksdalsvatnet til stamfiskanlegget på Leikvang. Det vil bli montert en heatwoork på inntaket som sikrer mot mulig underkjøling/nåleis. Kapasiteten på reservevannkilden blir ca. 9 m³/min.

Vannledning

Fra Teksdal kraftverk til utløp av Teksdalselva i Naustbukta vil vannledningen graves ned på vestsida av elva. Vannledningen skal ikke krysser elva. Det er dyrket mark på hele strekningen. Løsmassekart viser at det er elveavsetninger langs øvre del av strekningen, og marine avsetninger ved utløpet i Naustbukta. Terrenget røret legges i er relativt flatt. Bredden på traseen i anleggsperioden vil bli ca. 20 m. Lengde på røret blir ca. 1200 m. Det er planlagt å nytte PE-rør.

Fra Naustbukta til Gullvika skal det legges et PE-rør i sjøen for vanntilførsel til Gullvika. Lengde på røret gjennom sjøen blir ca. 3000 m.
Diameteren på vannveien vil bli 560 mm, og total lengde ca. 4200 m. Traseen er vist på kart i vedlegg 2.

Veibygging
Det finnes vei til Teksdal kraftstasjon og langs vestsida av Teksdalselva til utløp av Teksdalselva i sjøen. Det er ikke aktuelt å etablere nye veier.

For å komme til den øverste delen av vannledningen, vil jordet bli benyttet for kjøring i graveperioden. Inngrepene i forbindelse med kjøringen skal ikke overskride inngrepssonen i forbindelse med vannledningen. Den nederste delen av vannledningen er tilgjengelig fra eksisterende vei til utløpet av Teksdalselva ved Øren.

Massetak og deponi
Det vil ikke bli behov for massetak eller deponi i forbindelse med tiltaket.

Drift av settefiskanlegget

I resirkuleringsanlegget vil vannforsyningen bestå av 98,95 % resirkulert vann og 2,05 % nytt vann. Ved siden av å redusere naturinngrep til vannutaket, medfører en resirkuleringsstrategi at man får større kontroll over produksjonen. Resirkuleringsanlegg gir flere nye muligheter for produksjon i områder med lite vann, bedre utnytelse av produksjonsvolum og energi, samt bedre vekst og overlevelse på fisk fra resirkuleringsanlegg (AquaOptimum, 2008).

Kjøremønsteret for smoltanlegget forventes å bli jevnt over året. Behovet for nytt ferskvann ligger på ca. 10 m³/min (0,17 m³/s) hele året.

Det kan være aktuelt å benytte anlegget som et stamfiskanlegg. Det anslåes at anlegget vil koste ca. 200 NOK/kg smolt (årlig produksjon).

Anlegget er i dag planlagt med følgende bygg/avdelinger (se Figur 2-4):

- Klekkeri, 16 stk. klekkeskap
- Karhall startføring, 12 stk. Ø 6 m kar å 42 m³/kar, totalt 503 m³
- Karhall påvekst 1, 12 stk. Ø 10 m kar å 196 m³/kar, totalt 2 352 m³
- Karhall påvekst 2, 12 stk. Ø 16 m kar å 703 m³/kar, totalt 8 436 m³
- Karhall påvekst 3, 12 stk. Ø 16 m kar å 703 m³/kar, totalt 8 436 m³
- For klekkeri og karhaller planlegges det RAS anlegg og sortering/vaksinering
- Administrasjonsbygg
- Lager til før og kjemikalier
Figur 2-4 Situasjonsplan, Gullvika settefiskanlegg (Akvator)

Med dette resirkuleringsanlegget vil karkapasiteten for påvekst på anlegget bli totalt ca. 20 000 m³.

Prosjektet utnytter en eksisterende planert industritomt i Gullvika.

Eksisterende inntak i Teksdalsvatnet vil benyttes som reservevannkilde, se beskrivelse i avsnittet Inntak.

Vannforbruk

Settefiskanlegget vil i sin helhet bli drevet som et resirkuleringsanlegg. Dette innebærer de samme velferdsmessige kravene til vannkvalitet, tilførsel av oksygen samt akseptable nivåer av nedbrytingsproduktene CO₂ og ammonium (NH₄⁺) som i et gjennomstrømmingsanlegg.

Vannmengde i nytt resirkuleringsanlegg er 10 m³/min fordelt på klekkeri, startforingshall, påvekst 1-avdelingen, påvekst 2- og påvekst 3- avdelingen.

Fiskesperre eller uv-anlegg

Inntaket er oppstrøms anadrom strekning, slik at det ikke er behov for fiskesperre eller UV anlegg.
Vannbesparende tiltak
Som det er redegjort før, skal anlegget bygges med resirkuleringsteknologi, hvor behovet for utskifting av vann vil ligge på 2-5%.

Gullvika settefiskanlegg blir et stort og viktig anlegg med betydelige investeringer, en forutsetning for etablering er at det ikke oppstår brudd i vanntilførselen.

2.3 Fordeler og ulemper ved tiltaket
Fordeler

I anleggsfasen kan lokale entreprenører få jobb, og etterspørselen i servicenæringen øke.

Ulemper
Ulempene ved tiltaket er knyttet til redusert vanntilførsel på berørt elvestrekning og inngrep langs vannveien.

Ulemper er omtalt i kapittel 3.

2.4 Arealbruk og eiendomsforhold
Arealbruk
Tabell 2-3 viser et overslag over arealbruk ved bygging av Gullvika settefiskanlegg.

<table>
<thead>
<tr>
<th>Inngrep</th>
<th>Midlertidig arealbehov (daa)</th>
<th>Permanent arealbehov (daa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inntaksmagasin</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rørtrase/vannledning</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Riggområde</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Veier</td>
<td>3 (lang rørtrase)</td>
<td>0</td>
</tr>
<tr>
<td>Massetak/deponi</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anleggsområde (i Gullvika)</td>
<td>0</td>
<td>ca. 20 (se situasjonsplan i vedlegg)</td>
</tr>
</tbody>
</table>

Eiendomsforhold
Vedlegg 6 viser en oversikt over grunneiere som blir berørt av tiltaket.

Marine Harvest håper å oppnå minnelige avtaler med samtlige grunneiere. Det søkes ikke om ekspropriasjon.

2.5 Forhold til offentlige planer
Kommuneplan
Hele prosjektområdet ligger i kommuneplanens areal del i et LNFR-område (spredt bolig-, fritid-, og næringsbebyggelse samt reindrift). Det foreligger ingen reguleringsplaner i området.

Verneplan for vassdrag
Teksdalselva er ikke et verna vassdrag.
Nasjonale laksevassdrag

Teksdalselva er ikke et nasjonalt laksevassdrag. Nærmeste nasjonale laksevassdrag er Stordalselva og Norddalselva i Åfjord.

Ev. andre planer eller beskyttede områder

Det er ingen andre kjente planer for prosjektorådet.
3 Virkning for miljø, naturressurser og samfunn

3.1 Hydrologi (virkninger av utbyggingen)

Ved inntaket i Teksdalsvatnet har Teksdal selva en middelvannføring på 5,3 m³/s. 0,33 m³/s tas ut til stamfiskanlegget på Leikvang. Dette tilsvarer 6,3 % av middelvannføringen. Planlagt uttak til Gullvika settefiskanlegg tilsvarer 3,3 % av middelvannføringen etter at uttaket til Leikvang er fratrukket.

Teksdalsvassdraget er kraftig regulert. Nedbørfeltet inneholder fire reguleringsmagasin med et samlet volum på 37 mill. m³. Dagens situasjon på berørt elvestrekning, blir bestemt av driftsvannføringen ved kraftverket og overløp ved Teksdalsdammen.

Alminnelig lavvannføring (ALV) og 5-persentiler for sommer og vinter, er beregnet med programvare fra NVEs database Hydra II og NVEs lavvannskart. Beregningene er basert på data fra målestasjon 134.4 Teksdal. Resultatene er vist i Tabell 3-1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5-persentil sommervannføring (1.5-30.9)</td>
<td>1,29 m³/s</td>
</tr>
<tr>
<td>5-persentil vintervannføring (1.10-30.4)</td>
<td>1,77 m³/s</td>
</tr>
<tr>
<td>5-persentil år</td>
<td>1,55 m³/s</td>
</tr>
<tr>
<td>Alminnelig lavvannføring</td>
<td>1,42 m³/s</td>
</tr>
<tr>
<td>Restvannføring</td>
<td>0,21 m³/s</td>
</tr>
</tbody>
</table>

20. november 2012 ble en omløpsventil i Teksdal kraftverk tatt i bruk. Vannføringen i elva nedstrøms kraftverket vil aldri bli mindre enn kapasiteten på omløpsventilen. Bestillt kapasitet på omløpsventilen var 0,4 m³/s, men målinger viser at den yter ca. 0,9 m³/s. Etter 20. november 2012 skal vannføringen i Teksdalselva aldri være mindre enn kapasiteten på omløpsventilen.

I perioden 1987-2011, er det 16 døgn hvor middelvannføringen har vært under 0,9 m³/s.

Vannføringen på berørt elvestrekning vil ikke underskride 0,9 m³/s verken sommer eller vinter. Dette er lavere enn 5-persentilene som er beregnet til 1,3 m³/s og 1,8 m³/s for henholdsvis sommer og vinter.

Antall dager i året med tilsig større/mindre enn vannforbruket til settefiskanlegget, vil være avhengig av manøveringen av reguleringssmagasinene og Teksdal kraftverk. I perioden 1987-2011 var det ingen dager med vannføring mindre enn vannforbruket til Gullvika settefiskanlegg (vannføringa var større enn vannforbruket samtlige dager). FosenKraft AS skal sørge for at vannmengden nedstrøms Teksdal kraftverk ikke underskider kapasiteten på omløpsventilen.

I vedlegg 3 er det vist vannførings- og variighetskurver for Teksdalselva.
3.2 Simulering av tørrfall

I forbindelse med utarbeidelse av konsesjonssøknaden har Sweco Norge AS på oppdrag fra Marine Harvest Norway AS utarbeidet en vurdering av tørrfall på berørt elvestrekning nedstrøms utløpet fra Teksdal kraftverk.

Oppmåling av profiler i elva ble utført i samarbeid med Nidaros Oppmåling AS 5. november 2012.

3.2.1 Metode

Profiler og lokale navn/ fiskeplasser er avmerket i kartet, Figur 3-1.

Vannføringen ble målt til 4,7 m³/s. Målingene var vanskelig å gjennomføre på grunn av mye vegetasjon. Målt vannføring er vurdert opp mot NVEs målestasjon 134.3 Teksdal som måler vannføring like nedstrøms Teksdal kraftverk. Målt vannføring ved målestasjonen sank fra 4,5 m³/s til 4,4 m³/s under feltarbeidet. Avviket mellom vannføringene kan komme av at data fra målestasjonen er omregnet fra vannstand til vannføring via en vannføringskurve (sammenheng mellom vannstand og vannføring). I kalibrering av modellen, er det benyttet en gjennomsnittlig vannføring mellom de observerte verdiene på 4,6 m³/s. Timesdata fra stasjonen viser at vannføringen under feltarbeidet varierte lite (0,1 m³/s i løpet av 5 timer). Under feltarbeidet pågikk opprusting av Teksdal kraftverk, slik at kraftverket ikke var i drift.

Simulerte vannføringene:

- 4,6 m³/s (kalibrert vannføring)
- 2,6 m³/s (vannføring under feltarbeid biologer og fiske med el-fiskeapparat))
- 2,0 m³/s
- 1,4 m³/s (ALV, 1987-2011)
- 0,9 m³/s (vannføring ved bruk av omløpsventil)
- 0,7 m³/s (laveste måltevannføring, 1987-2011)
- 0,4 m³/s (bestilt kapasitet omløpsventil)
Figur 3-1 Profiler som ble oppmålt i Teksdalselva 5. november 2012. Nummeringen begynner ved skillet elv/sjø, dvs. nummeret på profilen tilsvarer avstand fra overgangen sjø/elva i meter.

3.2.2 Resultat

Etter kalibreringen spenner Mannings-verdiene i elva fra 0,036- 0,07.

Fra HEC-RAS-modellen er vannstand beregnet for omtalte vannføringer i de 23 profilene. Basert på dette, er vanndekket areal for elvestrekningen fra utløpet av Teksdal kraftverk til utløpet av Teksdalselva i sjøen beregnet. Elvestrekningen er 1062 m. Resultatet er presentert i Tabell 3-2.
Fra HEC-RAS-modellen er fire av de 23 profilene valgt ut for å vise vannstand ved ulike vannføringer på kritiske punkt i elva. De to første profilene viser situasjonen ved Kasthølen hvor elveløpet er delt i to. De to siste profilene viser situasjonen for et profil ved Kasthølen og et ved Langhølen. På grunn av geometrien i profilene er profil 602 og 274 kritiske ved tørrfall.

Profil 926

![Figur 3-2 Tverrprofil 926, sett i nedstrøms retning, vannføring 4,6 m³/s.](image)
Figur 3-3 Profil 926 i HEC-RAS. Linjene representerer vannstand ved ulike vannføringer.

Figur 3-3 viser at det ved alle vannføringer ned til 0,3 m³/s renner vann i vestre løp. Ved vannføringer under 0,3 m³/s renner det kun vann i høyre løp, og venstre løp er tørrlagt. Figur 3-3Feil! Fant ikke eferansekilden. viser at det er små endringer i vanndekket areal ved vannføringer rundt 1 m³/s.

Profil 903

Figur 3-4 Profil 903 sett i nedstrøms retning, vannføring 4,6 m³/s.
Figur 3-5 Profil 903 i HEC-RAS. Linjene representerer vannstand ved ulike vannføringer.

Ved Holmhølen (profil 903) er det betydelig dypere enn ellers på berørt elvestrekning. Nedstrøms profilen er det en terskel som holder vannstanden høy her, selv ved lave vannføringer.

Figur 3-5 viser at profilet er lite utsatt for tørrfall ned mot 0,1 m³/s.
Profil 602

Figur 3-6 Tverrprofil 602 sett i nedstrøms retning, vannføring 4,6 m³/s. Profilet er oppmålt i bakgrunnen av bildet, ved overgangen mellom rolig strømning og stryk.

Figur 3-7 Profil 602 i HEC-RAS. Línjene representerer vannstand ved ulike vannføringer.
Profil 274

Figur 3-8 Profil 274 sett i nedstrøms retning, vannføring 4,6 m³/s.

Figur 3-9 Profil 274 fra HEC-RAS. Lijnene representerer vannstand ved ulike vannføringer.

Figur 3-9 viser at ved vannføringer under 1,3 m³/s er det tørt i høyre løp. Figuren viser at profilet er svært sensitivt for tørrfall.
3.2.3 Leveområder for elvemusling

Figur 3-10 viser dybde og tetthet for noen leveområder for elvemusling i Teksdalselva. Målingene er utført 18. oktober 2012 ved vannføring ca. 2,6 m³/s.

Figur 3-10 Kart med leveområder for elvemusling. Punktene blir nummerert 1-5 fra Teksdal kraftstasjon.
Ved punkt 2 og 5 er det utført målinger i nærheten av observasjonen av elvemusling og konsekvens for området kan vurderes. Punkt 3 er like nedstrøms profil 602 som er presentert i kapittel 3.2.2.

Punkt 2
Ved punkt 2 ble det observert elvemuslinger på 0,14 m dyp ved vannføring 2,6 m³/s.

Data er baser på profil 877 som er målt like oppstrøms observasjonen. Usikkerheten i kalibreringen ved profil 877 er 1 cm.

Basert på vannstand ved ulik vannføring (se Figur 3-11) er dyp ved ulike vannføringer bestemt. Resultatet er vist i Tabell 3-3.

Tabell 3-3 Dyp ved ulike vannføringer ved punkt 2

<table>
<thead>
<tr>
<th>Vannføring (m³/s)</th>
<th>Dyp (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,6</td>
<td>0,14</td>
</tr>
<tr>
<td>2,0</td>
<td>0,11</td>
</tr>
<tr>
<td>1,4</td>
<td>0,07</td>
</tr>
<tr>
<td>1,3</td>
<td>0,05</td>
</tr>
<tr>
<td>0,9</td>
<td>0,02</td>
</tr>
<tr>
<td>0,7</td>
<td>Tørt på målt punkt</td>
</tr>
<tr>
<td>0,4</td>
<td>Tørt på målt punkt</td>
</tr>
<tr>
<td>0,3</td>
<td>Tørt på målt punkt</td>
</tr>
<tr>
<td>0,1</td>
<td>Tørt på målt punkt</td>
</tr>
</tbody>
</table>

Figur 3-11 Profil 877 fra HEC-RAS. Linjene representerer vannstand ved ulike vannføringer.

Punkt 5
Ved punkt 5 ble det observert elvemuslinger på 0,25 m dyp ved vannføring 2,6 m³/s.

Data er basert på profil 293 som er målt like oppstrøms observasjonen. Usikkerheten i kalibreringen ved profilet er 1 cm.

Basert på vannstand ved ulik vannføring (se Figur 3-12) er dyp ved ulike vannføringer bestemt. Resultatet er vist i Tabell 3-4.
Tabell 3-4 Dyp ved ulike vannføringer ved punkt 5

<table>
<thead>
<tr>
<th>Vannføring (m³/s)</th>
<th>Dyp (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,6</td>
<td>0,25</td>
</tr>
<tr>
<td>2,0</td>
<td>0,20</td>
</tr>
<tr>
<td>1,4</td>
<td>0,15</td>
</tr>
<tr>
<td>1,3</td>
<td>0,12</td>
</tr>
<tr>
<td>0,9</td>
<td>0,05</td>
</tr>
<tr>
<td>0,7</td>
<td>0,02</td>
</tr>
<tr>
<td>0,4</td>
<td>Tørt på målt punkt</td>
</tr>
<tr>
<td>0,3</td>
<td>Tørt på målt punkt</td>
</tr>
<tr>
<td>0,1</td>
<td>Tørt på målt punkt</td>
</tr>
</tbody>
</table>

Figur 3-12 Profil 293 fra HEC-RAS. Linjene representerer vannstand ved ulike vannføringer.

3.3 Vanntemperatur, isforhold og lokalklima

3.3.1 Dagens situasjon

Teksdalselva ligger i et område med kystklima. Kystklima er karakterisert med høy avrenning vinter og høst og lav avrenning om sommeren. Normal årmiddelnedbør i prosjektområdet er ca. 1300 mm/år, hvor ca. 800 mm er vinternedbør og ca. 500 mm er sommernedbør (NVEs Lavvannskart).

Teksdalselva er kraftig regulert, og vannføringen på berørt strekning bestemmes av drift ved Teksdal kraftverk. Det er stor demping i nedbørfeltet, med høy effektiv sjøprosent og fire reguleringsmagasin.

Som følge av varierende vannføring ved inntak/utløp av Teksdal kraftverk, vil evt. is i inntaks- og utløpsområdet være svak. Generelt er det lite isdannelse og isgang i Teksdalselva. Dette medfører at det er mye mose og gress i elveleiet.

3.3.2 Konsekvensvurdering

Vannmengden som tas ut tilsvarer ca. 3,4 % av middelvannføringen og vil ha liten innvirkning på vanntemperatur, isforhold og lokalklima.
Det forventes ikke endringer i vanntemperatur, islegging, isgang, kjøving eller risiko for frostrøyk som følge av tiltaket, hverken under anleggs- eller driftsfasen.

Tiltaket vil få ubetydelig konsekvens for vanntemperatur, isforhold og lokalklima.

3.4 Grunnvann, flom og erosjon

3.4.1 Dagens situasjon

NGUs database GRANADA viser at det langs Teksdalselva er påvist betydelige grunnvannsressurser. Et kartutsnitt fra grunnvannsdatabaseen er vist i Figur 3-13. Grunnvannsressursene ligger særlig ved og rundt Teksdal kraftstasjon. I nedre del av vassdraget er det et begrenset grunnvannspotensial.

Selv om det registrert et potensial for grunnvannsressurser er disse i dag ikke utnyttet.

Figur 3-13 Kartutsnitt fra grunnvannsdatabaseen GRANADA. Teksdalselva er markert med rødt.

NGUs kvartærgeologiske kart (løsmassekart) vist i Figur 3-14, viser at det i øvre del av Teksdalselva og ved Teksdal kraftstasjon er elveavsetninger. Dette er de samme områdene hvor det er påvist betydelige grunnvannspotensial.
Figur 3-14 Kartutsnitt fra NGUs nasjonale løsmassedatabase.

Løsmasseavsetninger langs elveløpet medfører at elvestrekningen kan være utsatt for erosjon ved flom. Langs elveløpet er det relativt lite erosjonsskader. Mye vegetasjon langs elva er med på å redusere erosjonsfaren.

Elva er sedimentførende, med relativt fint sediment.

3.4.2 Konsekvensvurdering

Området ved Teksdal kraftstasjon som har påvist betydelige grunnvannsressurser blir i liten grad berørt av tiltaket.

På elvestrekningen nedstrøms kraftverket, vil vannføringen etter utbygging bli redusert. Reduksjonen i middelvannføring blir ca. 3,4 % og vil medføre ubetydelige endringer for grunnvannet.

I anleggsfasen vil deler av området med grunnvannsressurser bli berørt.

Tiltaket vil få ubetydelig konsekvens for grunnvann, flom og erosjon.

3.5 Metode for verdi- og konsekvensvurdering av biologisk mangfold

Konsekvensvurderingen er et produkt av influensområdets verdi og grad av påvirkning som tiltaket vil føre med seg, jf. Figur 3-15 (Statens vegvesen, 2006).
3.6 Akvatisk miljø

3.6.1 Artsomtale elvemusling

I Norge forekommer arten i vassdrag langs hele kysten og i en rekke innlandsvassdrag (Dolmen & Kleiven 1997, Økland 1976, 1982). Muslingen foretrekker næringsfattig, kjølig vann med relativt høy strømhastighet (Hendelberg 1960). De finnes normalt på 0,5–2 meters dyp (Ziuganov et.al. 1994), og vannets pH bør være over 6,3 i årsminimum for at rekruttering skal opprettholdes (Sandaas 1995). Voksne muslinger finnes også i kulper og inn- og utstrøm av innsjøer og tjern. Elvemuslingen finnes normalt i områder med vannhastighet 0,1–0,8 m/s, men kan tolerere opptil 2 m/s (Grundelius 1987, Moog et. al. 1993, Ziuganov et. al 1994).

3.6.2 Artsomtale ål
Ålen gyter i Sargassohavet, nordøst for Cuba. Yngelen blir spredd derfra med havstrømmene, og tar tilhold i europeiske vassdrag og brakkvannsområder når de er ca. to og et halvt år gamle. Ved ankomst Europa er ålen ca. 6,5 cm lang, gjennomsiktig og kalles glassål. Den største andelen av bestanden med glassål vandrer opp i vann og vassdrag, men en mindre andel forblir i sjøen hele livet. Blankålen vandrer ut fra ferskvann fra vårparten til sent i november, vanligvis med høyest migrasjonsfrekvens tidlig høst.

I løpet av de siste tiåra har bestanden med Europeisk ål Anguilla anguilla gått sterkt tilbake, og ICES (International Council for the Exploration of the Sea) har konkludert med at bestanden er lavere enn den biologiske bæreevnen (Åström 2007). Bestanden av ål på glassålstadiet (ung ål som vandrer fra hav til ferskvann) har minket til under 5 % av hva bestanden var før 1980 (Tesch 2003). Som følge av den store og hurtige bestandsnedgangen, har ålen status i Rødlisten. Ålen er kategorisert som kritisk truet (CR) som følge av sterk populasjonsnedgang (Kålås et al. 2010). Årsaken til den markante og hurtige nedgangen i ålbestanden er ikke fastslått, men det er trolig flere årsaker ved de ulike livsstadiene til ålen. Noen av årsakene er overfiske, vandringshinder, død i kraftturbin og bioakkumulering av forurensning og klimaendring (Dekker 2007).

3.6.3 Metode for akvatiske faunaundersøkelser
Feltarbeidene på akvatiske fauna ble gjennomført av biologene Torstein Klausen og Håkon Gregersen.

Bestandsberegning av ungfisk av laks og sjøørret
El-fisket ble gjennomført på tre stasjoner. Alle stasjonene har et areal på minst 100 m² som ble overfisket tre ganger etter standardisert metode (Bohlin m.fl. 1989) 18. og 19. oktober i 2012. Estimater for fisketetthet ble beregnet på grunnlag av fangsttall. Metoden bygger på at tettheten av fisk beregnes ut fra nedgang i fangst mellom hver fiskeomgang. Når konfidensintervallet overstiger 75 % av estimatet har vi benyttet et estimat som tar utgangspunkt i at fisken som ble fanget utgjorde 87,5 % av det som fantes på det aktuelle arealet. Det vil si at vi antar at 50 % av fisken blir fanget i hver fiskeomgang. Estimatet beregnes da etter følgende formel:

\[X = \frac{(X1+X2+X3)}{0.875} \]

I likning (1) er X1, X2, og X3 fangst av fisk i fiskeomgang nr 1, 2 og 3.

Ørretene ble lengdemålt til nærmeste mm når de lå levende utstrakt i en målesylinder(naturlig lengde – Ricker 1979).

Bestandsvurdering av elvemusling
Undersøkelse av utbredelse og tetthet av elvemusling er gjennomført ved direkte observasjon (bruk av vannkikkert) og telling av synlige individer etter standardiserte metoder (Larsen & Hartvigsen 1999). Det ble foretatt 15 minutters fritelling av elvemusling på fire avgrensede stasjoner (200 m²) fordelt på elvas lengde nedstrøms Teksdal kraftverk. På to av stasjonene ble et utvalg på 20 individer lengdemålt. Elvemusling og tomme skall ble målt med skyvelære til nærmeste millimeter, før de ble satt tilbake der de ble funnet. Det ble også foretatt gravning etter unge muslingindivid i bunnsubstratet på tre prøveflater (1 m²). Elvemuslingbestanden ble forøvrig vurdert skjønnsmessig ved synfaring med vannkikkert i hele elva fra Teksdal kraftverk og nedstrøms til utløpet i sjøen. Grunne leveområder for elvemuslinger ble dybdemålt, for å kunne vurdere eventuell effekt av vannutta.

3.6.4 Resultater av undersøkelse av tetthet og utbredelse av elvemusling
Utbredelse av elvemusling i Teksdalselva nedstrøms Teksdal kraftstasjon.

Elvemuslingen ble funnet på hele den undersøkte strekningen. Tettheten varierer fra lav til meget stor tetthet, generelt sett med økende tetthet nedstrøms i elva. Det var gjennomgående gode leveområder for elvemusling, og leveområdene var stedvis på meget ”grunt” vann. Det ble funnet elvemusling på bare 14 cm dyp, og flere steder var det store kolonier på bare 20 cm dyp.

![Kartutdrag fra undersøkelsesområde](image.png)

Figur 3-16 Kartutdrag fra undersøkelsesområde. Kartet angir lokaliteter for elektrofiske (blå fylte sirkler), elvemusling stasjoner (15 minutter fritelling, grønne fylte sirkler) og utviklet flommarksskog (rød fylt sirkel). Elvemusling finnes på hele strekningen, men det er angitt ”mye” eller ”stor tetthet” der det ble registrert spesielt stor tetthet.

Tettheten på de fire utvalgte stasjonene for telling av elvemusling (Tabell 3-5) ble talt fra 52 til 291 individer. Det var økende tetthet nedstrøms elva. Tettheten ble estimert til hhv. 0,71; 2,62; 3,22 og 3,98 elvemusling per kvadratmeter på stasjon 1-4. Gjennomsnittet for de utvalgte stasjonene var på 2,63 musling per kvadratmeter.
Tabell 3-5 Stasjonsoversikt for utvalgte stasjoner for tetthetsvurdering i Teksdalselva. Tetthetsestimatene er omregnet fra 15 minutters fritelling tall til kvadratmeter tetthet ved for melen $Y = 0,205X - 0,002 \ (F_{1,36} = 262,3; 0,0001; \ r^2 = 0,88)$, der X= antall levende individer funnet pr. minutt og Y= antall musling pr. m² (Larsen & Hartvigsen 1999).

<table>
<thead>
<tr>
<th>Lokalitet</th>
<th>UTM</th>
<th>Elvemusling/ kvadratmeter</th>
<th>Elvemusling/ minutt</th>
<th>15 minutter fritelling snitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 32 V 543792 700059</td>
<td>0.71</td>
<td>3.47</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>2 32 V 543753 7000672</td>
<td>2.62</td>
<td>12.77</td>
<td>191.5</td>
<td></td>
</tr>
<tr>
<td>3 32 V 543688 7080873</td>
<td>3.22</td>
<td>15.73</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>4 32 V 543494 7081056</td>
<td>3.98</td>
<td>19.40</td>
<td>291</td>
<td></td>
</tr>
</tbody>
</table>

Lengdefordeling på et utvalg elvemusling fra Teksdalselva nedstrøms Teksdal kraftstasjon.

Lengdefordelingen for et tilfeldig utvalg av elvemusling plukket på stasjon to og fire overlappet tydelig, og gjennomsnittlig lengde var ikke statistisk forskjellig ($T, 0,03$). Det minste individet som ble registrert var på 64 millimeter lengde. Det ble gravd på tre prøveflater på den nederste stasjonen (stasjon 4, Langhølen), uten funn av unge eller nedgravde individer.

![Figur 3-17 Lengdefordeling for elvemusling på stasjon 2 og 4. Utvalget er 20 elvemusling fra hver stasjon.](image)

Deles det lengdemålte utvalget på lendegrupper fremkommer det tydelig at det er relativt lite innslag av de minste lengdegruppene (Figur 3-18). Dette kan tyde på at det er eller har vært rekrutteringssvikt. At det ikke ble funnet unge individer ved graveprøvene kan også underbygge dette.
Etter en omregningslikning kan vi grovt regne om alderen til det lengdemålte utvalget (Mutvei & Dunca 1995). Alderen på eldre musling er vist omregnet under, og det minste individet som ble funnet på 64 millimeter beregnes til 11 år.

3.6.5 Resultater fra elektrofiskeundersøkelse i Teksdalselva

Tetthet av ungfisk av laks og sjøørret

Det ble i alt fanget 41 ørret og 76 laks. Det ble fanget fiskeyngel av ørret og laks på alle stasjoner. Det var klar dominans av årsunger på alle stasjoner, både for laks og ørret. Det var dominerende med laks på de to nederste stasjonene, mens det var mest ørret på den øverste (Figur 3-20). Dette kan ha sammenheng med strømforhold eller gyteplassens beliggenhet. Det ble ikke registrert merket eller
skadd yngel. Den totale tettheten av ørretunger var på stasjon 1-3. hhv. 24, 9,5 og 2,2 ørret pr 100 m².
Tilsvarende var den totale tettheten for laksunger på 10,3; 36,6 og 35,3 laks pr 100 m².
Gjennomsnittstettheten av 0+ og eldre fisk av ørret var henholdsvis 11,9 og 1,8 individer pr 100 m².
Tilsvarende for laks var tettheten i gjennomsnitt 28,0 og 2,2 individer pr 100 m². Den stasjonsvise
estimerte tettheten for årsyngel av ørret var på hhv. 21,7; 15,2 og 2,0 fisk/100m² for stasjon 1-3.
Tilsvarende for eldre ungfisk av ørret var 2,3; 2,0 og 1,0 fisk per 100 kvadratmeter. For laks var
tilsvarende verdier for årsunger på 10,3; 32,0 og 41,7 fisk/100m² og 0; 4,4 og 2,3 fisk/100m² for eldre
ungfisk. De estimerte verdiene for årsunger og eldre ungfisk kan avvike fra den totale tettheten som
følge av usikkerheten i modellen ved lave tettheter.

Figur 3-20 Tetthet av årsyngel og eldre fisk på elektrofiskestasjon 1.-3. a) tetthet av ørret b) tetthet av laks.

Det ble registrert god rekruttering av årsyngel for både laks og ørret. Det var imidlertid funnet meget
lave tettheter av eldre ungfisk av begge artene. Det er usikkert om resultatene av elektrofisket gir et
riktig inntrykk av den faktiske sitasjonen for eldre ungfisk. Det var tilsynelatende gode leveområder
også for eldre fisk enn årsyngel. Elektrofisket ble gjennomført i en periode med mindre vannføring
enn hva som var foregående og representativt for høsten 2012. Det var allikevel relativt stor
vannføring, noe som øker usikkerheten i estimatene. Dette burde allikevel gitt utslag for tettheten hos
årsunger. Eldre fisk er imidlertid mer mobile, og kan komme seg unna lettere i strømmende vann. Det
can også være at en større andel av den eldre ungfisken lever mer i kulparealene, spesielt i år/perioder
med mye vannføring. At vesentlige deler av bestanden kan benytte kulpareal som leveområde er
tidligere vist i Norge for laks og ørret (Bremset & Berg 1999).

Gode gyteområder og oppholdskulper
Det ble registrert gode gyteområder for laks og sjøørret spredt på hele den befarte strekningen. Det er
også gode standplasser for gytefisk i Holmhølen, Kasthølen og Langhølen. Det er uklart i hvilken grad
disse kulpenes også fungerer som vinterstandplasser.

Ål i Teksdalselva
Det ble fanget ål på alle elfiskestasjonene. Det var til sammen seks ål som ble fanget og satt tilbake i
elva. Lengden på ålen varierte fra 150 til 300 mm. Dette tyder på at det er relativt mye ål i
Teksdalselva. Det ble registrert gode leveområder for ål, spesielt i tilknytning til kulparealene,
Holmhølen, Kasthølen og Langhølen.
Teksdalselva, med sin akvatiske fauna, er av stor verdi.

3.6.6 Konsekvensvurdering for akvatisk fauna

Store og tette bestander med elvemusling og ål er vurdert som områder som er meget viktig å forvalte riktig. En riktig vannføring, uten kritiske tørrfall er avgjørende for positiv utvikling av begge disse bestandene, og spesielt elvemuslingen.

På bakgrunn av tidligere historiske døgnmiddelverdier er det vurdert til hvilken hyppighet vannføringen har tilsvart vannføringskapasiteten for omløpsventilen (0,9 m³/s), eller mindre. Vurderingen er basert på døgnmiddel, så at vannstanden har vært lavere enn middelet for kortere periode er sannsynlig. Fra tidligere er det kjent at det i perioden 01.01.1987 til 31.12.2011 var 16 døgn med døgnmiddel under 0,9 m³/s. 11.12.2010 var det 0,88 m³/s (1 døgn), og 27.08.2002-11.09.2002 var det vannføringer i intervallet 0,7-0,89 (15 døgn).

Tørrlagte elvemusling?

På bakgrunn av hydrologiske simuleringene, er det sannsynlig å anta at det tidligere har vært episoder der leveområder for elvemusling har vært tørlagt. Det er derfor også sannsynlig at voksen elvemusling kan ha tørket ut, og at nedgravde individer, spesielt rekrutter kan ha blitt kvalt som følge av oksygenmangel. I utvalget var det overrepresentasjon av eldre musling, noe som kan være resultat av tidligere tørrlegginger. På to av områdene der det var leveområde for elvemusling på grunt vann (figur 3-15) viser simuleringene at ved minste vannføring (0,9 m³/s) er det nær ved strand. Generelt er elvemuslingen vurdert til å være ytterst lokal, og gjerne oppholde seg på samme standplass gjennom livet. Noen bestander søker temporært ”tilflukt” i bunnsubstratet ved flomepisoder, men andre populasjoner kan leve utelukkende nedgravd i substratet. Det er uklart i hvilken grad elvemuslingen faktisk klarer å ta seg frem til dypere vann i tørrleggingssituasjoner. Elvemuslingen beveger seg svært langsamt, men det kan være at den faktisk kan søke seg til dypere områder.

Konsekvensen ved at det skal tas ut ca. 3,4 % av middelvannsføringen vurderes for elvemusling kun til å påvirke en større risiko for å nå LRV i Teksdalsvatnet tidligere i ”tørre” situasjoner. Dette skal ved riktig bruk av regulering i Teksdalsvatnet og de andre magasinene videre oppover i vassdraget, nesten
ikke kunne forekomme, og vannstanden vil trolig ikke komme under 0,9 m³/s som er kapasiteten til omløpsventilen.

Ål og anadrom fisk- nøkkelområder

Tilsvarende som for elvemusling er gyteområder for anadrom fisk utsatt for tørrlegging. Fisken gyter i perioden oktober- november, en tidsperiode som normalt har høy vannføring. Fisken gyter på grunne strømrike partier, som er utsatt for tørrfall i spesielt tørre perioder. Rogna er spesielt vannførende, og med forutsetning at omløpsventilen leverer 0,9 m³/s vil ikke slike tørrlegninger oppstå.

Ål benytter seg av ulikt habitat under oppveksten i ferskvann. Ungål (10-30 cm) kan gjerne være på grunnområdene, mens større ål foretrekker dypere områder som kulper og innsjø. Ålen er en robust skapning som kan krype over tørt land for å komme til nye vannområder. Ålen er spesielt utsatt for nedvandring gjennom kraftverksturbin. Det er lite sannsynlig at vannuttak kan påvirke ålebestanden nevneverdig. Det er imidlertid viktig å tenke på tiltak for å hindre ålen i å vandre inn i, eller bli sugd inn i vanninntaket.

Tabell 3-2 viser en oversikt over reduksjon i vanndekt areal for ulike vannføringer ved et vannuttak på 0,17 m³/s. Ved en vannføring på 1,4 m³/s vil reduksjonen i vanndekt areal bli 2 %, noe som ikke blir sett på som kritisk. Det er først og fremst svært svært lave vannføringer som er lite gunstig for anadrom fisk, og med forutsetning at omløpsventilen leverer 0,9 m³/s, vil ikke slike lave vannføringer oppstå.

Ålen er en robust skapning som kan krype over tørt land for å komme til nye vannområder. Ålen er spesielt utsatt for nedvandring gjennom kraftverksturbin. Det er lite sannsynlig at vannuttak kan påvirke ålebestanden nevneverdig. Det er imidlertid viktig å tenke på tiltak for å hindre ålen i å vandre inn i, eller bli sugd inn i vanninntaket.

Påvirkningen av en redusert vannføring på 0,17 m³/s vurderes å ha ubetydelig til liten negativ påvirkning på akvatisk miljø. Dette gir liten negativ konsekvens for akvatisk miljø (-).

3.7 Terrestrisk miljø

3.7.1 Dagens situasjon

Flora

Figur 3-23 Avgrensede naturtyper i prosjektorområdet. Kantsonene mot elva med gråor – sumpskog har stor verdi, mens brakkvannsdeltaet og flommarkskogen har middels verdi.

Pattedyr og fugl
Når det gjelder fugl er det tidligere påvist flere rødlistearter i prosjektorområdet. Av vanntilknyttede arter er dette strandsnipe og fiskemåke, begge nær truet (NT). I tillegg er det observert stær, bergirisk og hønsehauk i området, alle NT. Fossekall ble observert ved flere anledninger under feltarbeidet og har trolig tilhold i elva. Om den hekker i tilknytning til elva er ukjent, men det finnes egende hekkeplasser.

Oter (VU) er registrert ved utløpet av elva, og bruker trolig elva til næringsøk. I Naturbase er det registrert en trekkvei for rådyr som krysser elva ca 200 meter ovenfor utløpet i sjøen. Ellers er det forventet et dyr- og fugleliv som er typisk for regionen.

Samla er terrestrisk miljø gitt middels verdi.
3.7.1 Konsekvensvurdering

Sumpskogsutføringene og flommark er avhengig av en god vannhusholdning for og ikke forringes eller tørkes ut. Naturtypene er begunstiget av høy grunnvannsstand og hyppige flomtilfeller (årvisse).

Det er på bakgrunn av hydrologiske betraktninger ubetydelig påvirkning på grunnvannstand. Det er imidlertid en liten risiko for hyppigere og lengre tørreperioder.

Vannutaket på 0,17 m³/s vurderes å gi liten negativ påvirkning på de avgrensede naturtypene forutsatt at middelvannsføringen tilsvarer måleperioden 1987-2011.

Redusert vannføring er ikke så omfattende at det forventes negativ påvirkning på fossekall. Annet vil hovedsakelig påvirkes negativt i anleggsfasen ved at de blir forstyrret. Det er derfor trolig at områdebruken endres i denne perioden. I driftsfasen vil områdebruken gå tilbake til det opprinnelige.

I driftsfasen vil påvirkningen være ubetydelig til liten negativ, noe som gir liten negativ konsekvens for terrestisk miljø (-).

3.8 Landskap og inngrepsfrie naturområder

3.8.1 Dagens situasjon

Landskap

Teksdalselva er ei lita elv som renner fra Teksdalsvatnet og ut i fjorden ved Naustbukta. Elva renner fra sør mot nord og vekler mellom kulper og stryk. Det er jordbruk som preger de nærliggende områdene til elva i nedre del, men det er stort sett kantskog mellom elva og den dyrka marka. Øvre del av elva er tørrellagt og landskapet bærer preg av dette. Innsynet til elva på den øvre strekningen er noe skjermet av skog. Skogen i området består i all hovedsak av gråor og bjørk.

Øverst på dagens elvestrekning ligger det en kraftstasjon som er godt synlig i terrenget. Det går veier på begge sider av elva, men fylkesvei 861 som den største ved Naustbukta. Elva renner fra sør mot nord og vekler mellom kulper og stryk. Det er jordbruk som preger de nærliggende områdene til elva i nedre del, men det er stort sett kantskog mellom elva og den dyrka marka. Øvre del av elva er tørrellagt og landskapet bærer preg av dette. Innsynet til elva på den øvre strekningen er noe skjermet av skog. Skogen i området består i all hovedsak av gråor og bjørk.

Prosjektområdet har liten til middels verdi for landskap.

Inngrepsfrie naturområder
Prosjektet berører ikke noen inngrepsfrie naturområder. Temaet har ingen verdi.

3.8.2 Konsekvensvurdering

Rørtraséen vil være synlig som et sår i terrenget inntil revegetering skjer. Traséen vil uansett i all hovedsak gå over dyrket mark, slik at inngrepet vil ikke påvirke landskapet på sikt. Den reduserte vannføringen tiltaket vil føre til er så liten at det visuelt ikke blir noen forandringer.
Det vil bli ubetydelig til liten negativ påvirkning på landskapet. Dette gir liten negativ konsekvens for landskap (-).

3.9 Kulturminner

3.9.1 Dagens situasjon

Det er tre tun med SEFRAK-bygninger i prosjektområdet, hvorav ett ligger på vestsiden av elva langs rørtraseen (Figur 3-24).

Figur 3-24 Fredete kulturminner og SEFRÅK-bygninger i prosjektorområdet. SEFRÅK-bygninger vist med trekanter.

Prosjektorområdet har middels verdi for kjente kulturminner.

3.9.2 Konsekvensvurdering

Redusert vannføring og ingrepene som må gjøres i forbindelse med rørgaten, kommer ikke i konflikt med noen kjente kulturminner. Det kan imidlertid være kulturminner som ikke er kjent langs rørtrasen, men dette vil ikke bli avklart før kulturmyndighetene har undersøkt området.

Det forventes ubetydelig påvirkning på kjente kulturminner. Dette gir ubetydelig konsekvens for kulturminner (0).
3.10 Landbruk

3.10.1 Dagens situasjon

Store deler av arealene rundt Teksdalselva er dyrka mark. På rørstrekningen er det i all hovedsak fulldyrka jord, med noe kantskog av middels bonitet. Ellers i området er det lite høyproduktiv skog, og boniteten er generelt lav.

Prosjektområdet har stor verdi for landbruk.

3.10.2 Konsekvensvurdering

Rørtraseen vil i all hovedsak gå over dyrka mark. Dette vil legge beslag på areal i anleggsfasen. I driftsfasen vil imidlertid marka kunne drives som før.

Landbruket vil bli påvirket i anleggsfasen, men i driftsfasen blir det ingen påvirkning. Dette gir ubetydelig konsevens for landbruk (0).

3.11 Ferskvannsressurser

3.11.1 Dagens situasjon

Det er igjen brønner eller andre kjente vannutak i prosjektområdet. NGUs grunnvannsdatabase (GRANADA) viser at det er betydelige grunnvannsressurser langs Teksdalselva.

Marine Harvest tar årlig ut 10 mill. m³ fra Teksdalsvatnet til eksisterende stamfiskanlegg på Leikvang. For nærmere beskrivelse, se punkt 1.4 tidligere i dokumentet.

Teksdalselva har middels verdi for ferskvannsressurser.

3.11.1 Konsekvensvurdering

Marine Harvest sitt nåværende uttak av vann fra Teksdalsvatnet ligger ovenfor planlagt vannutak og blir ikke påvirket av prosjektet. Når det gjelder grunnvann er uttaket av så liten skala at det ikke forventes å endre grunnvannsnivået i området merkbart.

Dette gir ubetydelig påvirkning på ferskvannsressurser, og ubetydelig konsevens (0).

3.12 Brukerinteresser

3.12.1 Dagens situasjon

Når det gjelder brukerinteresser i prosjektområdet er det i all hovedsak fiske i Teksdalselva som er av stor verdi. Teksdalselva er i klassisk smålakselv med en anadrom strekning på ca 1 km. Fangsten i elva har i de siste årene vært fra 100-300 kg. Siden 2007 er det Bjugn/Ørland jeger- og fiskeforening som har gjennomført organiseringen av fiske i elva. Fisket er strengt regulert, med begrenset antall fiskere per døgn og det er kun lov å fange 1 laks per døgn per fisker. Fisket har i hovedsak blitt utført av lokale, men det er også tilreisende fiskere, både fra utlandet og fra andre steder i Norge. Elva er godt tilrettelagt for fiske, med stier langs elva og tilrettelagte teltplasser og gapahuker. I tillegg er det
startet opp arbeid med å tilrettelegge for funksjonshemmede på tre plasser langs elva. I følge Kjell Skjellvik i Bjøn/Ørland jeger- og fiskeforening er elva av stor rekreasjonsverdi og svært attraktiv for allmennheten.

Brukerinteresser blir gitt stor verdi pga fiskeinteressene i Teksdalselva.

3.12.1 **Konsekvensvurdering**

Vannuttaket vil føre til reduksjon av vannføring tilsvarende 3,4 % av middelvannføring i perioden 1987-2011. Det er tvilsomt om dette vil ha noen stor negativ effekt på fisket i Teksdalselva. Det er nok viktigere å unngå perioder med svært lav vannføring, spesielt i gytetida, men dette er noe som blir styrt av kraftselskapet.

Påvirkningen på brukerinteresser som følge av planlagt tiltak vil være av ubetydelig til liten negativ grad. Dette gir liten negativ konsekvens for brukerinteresser (−).

3.13 **Samiske interesser**

Tiltaket vil ikke ha innvirkning på samiske interesser.

3.14 **Reindrift**

Det drives reindrift på Fosen og reindistriktet kalles Fosen/Fovsen Njaarke og har per 1/1-2011 et reintall på 1839. Etter reindriftskartet (Reindriftsforvaltningen) berøres ikke reindrifta av et eventuelt inngrep i Teksdalen.

Prosjektområdet har ingen verdi for reindrift.

3.15 **Samfunnsmessige virkninger**

I anleggsfasen kan lokale entreprenører få jobb, og etterspørselen i servicenæringen øke.

3.16 **Konsekvenser ved brudd på dam**

Det etableres ikke nye dammer i forbindelse med tiltaket. Skjema «Klassifisering av dammer og trykkrør er derfor ikke vedlagt søknaden.
3.17 Oppsummering

Tabell 3-6 Verdi og konsekvensvurdering for det enkelte fagtema

<table>
<thead>
<tr>
<th>Fagtema</th>
<th>Dagens verdi</th>
<th>Konsekvens</th>
<th>Søker/konsulents vurdering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akvatisk miljø</td>
<td>Stor</td>
<td>Liten negativ</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Terrestrisk miljø</td>
<td>Middels</td>
<td>Liten negativ</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Landskap og INON</td>
<td>Liten til middels</td>
<td>Liten negativ</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Kulturminner og kulturmiljø*</td>
<td>Middels</td>
<td>Ubetydelig</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Landbruk</td>
<td>Stor</td>
<td>Ubetydelig</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Ferskvannsressurser</td>
<td>Middels</td>
<td>Ubetydelig</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Brukerinteresser</td>
<td>Stor</td>
<td>Liten negativ</td>
<td>Søker & konsulents</td>
</tr>
<tr>
<td>Reindrift</td>
<td>Ingen</td>
<td>Ingen</td>
<td>Søker & konsulents</td>
</tr>
</tbody>
</table>

*Verdivurdering og konsekvens for kulturminner kan forandre seg etter en eventuell befaring og undersøkelse fra kulturminnemyndighetene.
4 Avbøtende tiltak

Her diskuteres mulig avbøtende tiltak i anleggs- og driftsfasen som kan bidra til å redusere konfliktnivået.

Tidspunkt for anleggsarbeid
Arbeidet med vannveien bør så langt det er mulig unngås i tiden jorda kan dyrkes. Arbeidet med vannveien kan for eksempel foregå på vinteren, slik at jorda kan bli tilsådd etter arbeidet og drives som vanlig uten å miste nevneverdig vekstsesong.
5 Referanser

Databaser

Art databanken. Artskart.
Art databanken. Rødlistebasen
Direktoratet for naturforvaltning. Inngrepsfrie Naturområder i Norge 2008
Direktoratet for naturforvaltning. WMS-klient
Klima- og forurensningsdirektoratet (Klif). Gruver med stor avrenning, www.miljostatus.no Norsk
Ornitologisk forening. Fugleatlas: http://www.birdlife.no/fuglekunnskap/fugleatlas/
Norges geologiske undersøkelser (NGU). Berggrunn. Grunnvanns databasen (Granada)
Norges vassdrags og energidirektorat. NVE Atlas, NVE Atlas Vannkraftverk, Hydra II
NVEs avrenningskart
NVEs Lavvannskart
Naturbase.no
Reindriftsforvaltningen. Reindriftskart
Riksantikvaren. Kulturminnesøk.no
Statens kartverk/NGU. Arealis karttjeneste
www.vannportalen.no
www.fosenkaft.no/kraft (informasjon om Teksdal kraftverk)

Muntlige kilder

Geir Svendsen, produksjonssjef, FosenKraft AS
Edmar Bakøy, Bjugn kommune
Kjell Skjelvik, Bjugn/Ørland jeger og fiskeforening

Litteratur

Bauer, G. 1986. The status of the freshwater pearl mussel Margaritifera margaritifera L. in the south of

Bauer, G. 1988. Threats to the freshwater pearl mussel Margaritifera margaritifera L. in Central

6 Vedlegg til søknaden

1. Oversiktskart (1:80 000) med nedbørfelt og omsøkt prosjekt inntegnet.
2. Detaljkart over utbyggingsområdet.
4. Bilder av berørt område og vassdraget.
5. Bilder av Teksdalselva ved ulike vannføringar
6. Oversikt over berørte grunneiere
7. Situasjonsplan for Gullvika settefiskanlegg
8. Manøvreringsreglement Teksdal kraftverk

Ikke opprykt vedlegg:
- Skjema for dokumentasjon av hydrologiske forhold
VEDLEGG 1:

OVERSIKTSKART OVER PROSJEKTOMRÅDET (1:80 000)
VEDLEGG 2:
DETALJKART OVER UTBYGGINGSOMRÅDET
VEDLEGG 3:

FLERÅRSSTATISTIKK, DØGN, MÅNED OG ÅR

VARIGHETSKURVER (ÅR, SOMMER OG VINTER)

KURVER SOM VISER VANNFØRINGSFORHOLD FØR OG ETTER UTBYGGING (TØRT, MIDDLES OG VÅTT ÅR)
Figur 1. Plott som viser variasjon i vannføring over året (måneddata).

Figur 2. Plott som viser maksimum, minimum og middel vannføringer (døgndata).
Figur 3. Plott som viser variasjon i vannføring fra år til år.

Figur 4. Varighetskurve, kurve for flomtap og kurve for tap av vatn i lavvatn perioden, for sommersesongen (1/5 – 30/9).
Figur 5. Varighetskurve for vintersesongen (1/10 – 30/4).

Figur 7. Varighetskurve for hele året, minste og største slukevne
Vannføringsforhold i Teksdalselva like nedstrøms utløpet fra kraftverket

VEDLEGG 4:
BILDER FRA BERØRT OMRÅDE OG VASSDRAGET
Bilde 1 Dam Teksdalsvatnet.

Bilde 2 Teksdal kraftstasjon.
Bilde 3 Utløp Teksdal kraftverk.

Bilde 4 Teksdalselva sett fra Teksdal kraftverk.
Bilde 5 Ved Holmhølen, bildet er tatt medstrøms. Vannledningen vil graves ned gjennom dyrket område til venstre i bildet.

Bilde 6 Tilrettelagt for fiske ved Kasthølen med gapahuk til høyre. Bildet er tatt medstrøms.
Bilde 7 Bildet er tatt vest for utløpet av Teksdalselva i sjøen. Vannledningen vil gå til venstre i bildet.
VEDLEGG 5:

BILDE AV TEKSDALSELVA
VED ULIKE VANNFØRINGER
Figur 10 Bildet er tatt 18.10.2012, vannføring ca. 2,5 m³/s.

Figur 11 Bildet er tatt 24.6.2012, vannføring ca. 3 m³/s.
Figur 12 Bildet er tatt 28.5.2012, vannføring ca. 4,2 m³/s.

Figur 13 Bildet er tatt 05.11.2012, vannføring ca. 4,5 m³/s.
Figur 14 Bildet er tatt 11.4.2012, vannføring ca. 6 m³/s.
VEDLEGG 6:

OVERSIKT OVER BERØRTE GRUNNEIERE
Berørte grunneiere og rettighetshavere:

<table>
<thead>
<tr>
<th>Gnr./Bnr.</th>
<th>Grunneier</th>
</tr>
</thead>
<tbody>
<tr>
<td>74/1</td>
<td>Alt Schjølberg, 7168 Lysøysund</td>
</tr>
<tr>
<td>74/18</td>
<td>Nora Aune, 7168 Lysøysund</td>
</tr>
<tr>
<td>74/3</td>
<td>Hans Jørgen Sundseth, 7167 Vallersund</td>
</tr>
<tr>
<td>74/8</td>
<td>Leif Braa, 7290 Støren</td>
</tr>
<tr>
<td>74/9*</td>
<td>Mona Blomseth, Nordslettvieien 30, 7038 Trondheim</td>
</tr>
<tr>
<td>74/21</td>
<td>FosenKraft AS, 7160 Bjugn</td>
</tr>
</tbody>
</table>

*kyssing av eiendommen kan unngås.
VEDLEGG 7:

SITUASJONSPLAN FOR GULLVIKA SETTEFISKANLEGG
VEDLEGG 8:

MANØVRERINGSREGLEMENT TEKSDLAL KRAFTVERK
Teksdal kraftstasjon

Manøveringsreglement.

Vinterkjøring:
Normalt fylles magasinene opp i sept/okt slik at vi kan kjøre begge maskinene for fullt. De gangene vi får overløp i Teksdalsdammen er som oftest i tidsrommet november – mars. Laugen og Hildremsdam stenges i november. Magasinene vil normalt minske i tidsrommet mars-april og vil deretter øke noe avhengig av snøsmeltingen i fjellet.
Det er naturlig at begge maskinene går for fullt fram til mai.
Hvis vannstanden i Teksdalsvatnet er lavere enn minus 1,5 m stoppes generator 2, mens generator 1 kjøres på 1000 kW. Lukene i Gjølgadam manøvreres slik at vannstanden er høyest mulig i Teksdalsvann.

Sommerkjøring:
Når (hvis) vannstanden i Gjølgavatnet går under minus 2,5 m og ikke greier å fylle etter i Teksdalsvann kjøres generator 1 ned på 600 kW eller stoppes.
Hvis begge maskinene stoppes, åpnes automatisk forbislipningsventil i kraftstasjonen for å slippe vatn i elva. Vannføring i elva blir da 0,9 m³/s. På målestaven ved limnografen nedstrøms stasjonen vil vannstanden da være ca 0,7 m.

Fig.1: Snittproduksjon pr måned 1976-2008
Forhold i magasinene:

Teksdalsvannet kan reguleres mellom kotehøyde 49,0 moh (HRV) og 45,20 moh (LRV), det vil si 3,8m. I praksis har vi aldri så lav vannstand grunnet bunnsforhold ved brua. Det er heller ikke ønskelig å kjøre maskinene ved lav vannstand grunnet lavere fallhøyde på vannet. Når vannivået er under minus 3,0 m stoppes begge maskiner og bunntappeluke åpnes. ST Stamfisk vil fortsatt hente vann fra magasinet.

Gjølgavannet kan reguleres mellom kotehøyde 51,40 moh og 47,40 moh, det vil si 4,0m. I praksis er vi aldri under 3,0m (48,4 moh) grunnet bunnsforhold oppstrøms dam.

Teksdalselva er tørr oppstrøms kraftstasjonen under normale forhold. I flomsituasjoner eller når maskinen stoppes vil elva føre vann. Elvestrekningen fra kraftstasjonen til sjøen er påvirket av kjøring av aggregatene. Av hensyn til laks og sjøørret må elva ikke utsettes for unødvendig hurtig endring i vannføring. Hvis aggregatene stopper i feilsituasjoner åpnes automatisk forblisningsventil i kraftstasjonen.

Revidert 01.10.2012

Geir Svendsen
produksjonssjef