1. Innhold.

2. Figurar og tabellar.

3. Innleding.
 3.1 Området. ... 4
 3.2 Tidligere regulering. .. 4
 3.3 Utbyggingsplanane.. 4

4. Fisk.
 4.1 Registreringar i Hjartdøla med Vesleåi og Skorva. 4
 4.2 Resultat. ... 5
 4.2.1 Hjartdøla. .. 5
 4.2.2 Skorva. .. 6
 4.2.3 Vesleåi. .. 7
 4.3 Vurdering av prøvefisket. .. 8
 4.3.1 Hjartdøla. .. 8
 4.3.2 Skorva. .. 9
 4.3.3 Vesleåi. .. 9
 4.3.4 Heddøla. ... 9
 4.3.5 Generelle biotopkrav for aure i elv. 9
 4.3.6 Vilkåra i Hjartdøla. ... 11
 4.4 Verknader av utbygging. ... 12
 4.4.1 Kompenserande tiltak. ... 14
 4.5 Omfanget av fisket i Hjartdøla, Heddøla og Skogsåi. 15
 4.6 Kjelder ... 16

5. Elvemusling (Margaritifera margaritifera). 18
 5.1 Generell bestandsstatus. .. 18
 5.2 Krav til leveområdet. .. 18
 5.3 Levevis. ... 18
 5.4 Søk etter elvemusling. .. 19
 5.5 Funn av elvemusling. .. 20
 5.5.1 Tidligere funn. ... 21
 5.5.2 Tetthet. .. 22
 5.5.3 Alder og rekruttering. .. 22
 5.5.4 Verneverdi. .. 23
 5.6 Verknader av regulering. .. 24
 5.7 Kompenserande tiltak. .. 26
 5.8 Kjelder ... 26

6. Bunndyr. 27
 6.1 Generelt ... 27
 6.2 Metodikk ... 27
2. **Figurar og tabellar.**

Figur 1. Tilbakerekna vekst for aure fanga under prøvefiske 10.9.1998 .. 6
Figur 2. Lengdefordelig i ganfangst 10.9.1999 .. 6
Figur 3. Kondisjonsfaktor hos aure fanga i garn 10.9.1999 .. 6
Figur 4. Empirisk vekst utifrå prøvefiske 23.8.1998 ... 7
Figur 5. Lengdefordeling hos aure fanga 6.8.1999 ... 7
Figur 6 Wentworth skala for inndeling av partiklar ... 19
Figur 7. Førekomst av musling i Hjartdøla .. 22
Figur 9. Kjende førekomstar av musling i Telemark .. 23
Figur 11. Oversikt over innsamlede dyregrupper i Hjartdøla og Skorva november 1998 28
Figur 12. Summen av antall arter og grupper gir en indikasjon på biologisk mangfold 28
Figur 13. Antall steinfluelarver på de ulike stasjonene i Hjartdøla desember 1998 29
Figur 15. Steinflue- og døgnfluearter på stasjon 1 og 2 ... 30
Figur 16. Steinflue- og døgnfluearter på stasjon 3 og 4 ... 31
Figur 17. Steinflue- og døgnfluearter på stasjon 5 og 6 ... 32
Figur 18. Steinflue- og døgnfluearter på stasjon 7 ... 32
Figur 19. Frittlevende og husbyggende vårfluelarver på de enkelte stasjonene 32
Figur 20. Billeglarver på de enkelte stasjonene ... 33
Figur 21. Fjærmygglarver på de enkelte stasjonene .. 33
Figur 22. Fåbørstemarker på de enkelte stasjonene ... 34
Figur 23. Knottlarver på de enkelte stasjonene ... 34
3. Innleiding.

3.1 Området.

Denne rapporten er i fyrste rekke konsentrert om elva Hjartdøla frå Hjartsjø til ca 500 m nedanfor Omnesfossen, som markerer skiljet mellom Hjartdøla og Heddøla. Når det gjeld fisk er også sidebekkane Vesleåi og Skorva vurdert.

For Skogsåi er det gjennomført eigne utgreiingar på fisk, vilt og botndyr i samband med tidlegare planar om eit eige kraftverk for Skogsåi. I denne rapporten er Skogsåi derfor bare undersøkt med tanke på elvemusling.

Sør for Hjartdøla ligg Lifjellmassivet, som er dominert av den sure bergarten kvartsitt. I nordvest er det innslag av meir basiske bergarter (metabasalt mm.) og i nordaust (Tuddalsdalen) granitt og gneisgranitt.

3.2 Tidlegare regulering.

Ca 62% av det totale nedbørsfeltet til Hjartdøla ved Omnesfossen er i dag regulert til kraftproduksjon. Hjartdøla kraftverk var ferdig i 1958. Dette har gitt elva ei relativt stabil og høg vintervassføring, i middel ca 150% av det som var tidlegare. Om sommaren har vassføringa periode vis vore betydeleg redusert, men i nedbørrike somrar har det innimellom vore slept ein del vatn på kraftverket. Dette har ført til relativt kraftige døgnvariasjonar, med opptil 1 m i nivåskilnad enkelte stader.

3.3 Utbyggingsplanane.

Fallet frå Hjartsjø til nedunder Omnesfossen er tenkt nytta ved at det blir laga ein tunnel med inntak i Hjartsjø. Denne tunnellen vil gå på nordsida av dalen og fange opp dei to sidebekkane Vesleåi og Skorva. Kraftverket vil ligge i fjell nord for Sauland sentrum. Utløpet frå kraftstasjonen vil ligge på sørsida av elva ca 500 m nedanfor Omnesfossen.

Det er i fyrste rekke vassføringa om vinteren som vil bli nytta. Men ved vassføring over 7 kbm/sek i Omnesfossen vil kraftverket også bli kjørt om sommaren. Kraftverket vil ha ein kapasitet på ca 40 kbm/sek og produksjonen er rekna til 201,8 GWh. Minstevassføring i Omnesfossen vinterstid er rekna til 1,0 kbm/sek og om sommaren (1.5.-30.9.) 2,5 kbm/sek. Skorva og Vesleåi vil bli tørrlagde frå kraftstasjonen.

Skogsåi vil bli overført frå Sønnlandsvatn. Vassføringa i Skogsåi vil derfor bli sterk redusert. Det er gjort rekening med ei minstevassføring nede ved utløpet av elva på 0,5 kbm/sek i sommarhalvåret og 0,1 kbm/sek om vinteren (1.10.-30.4.). Sidebekkane Grovaråi, Vesleåi, Upptigåi og Rådalsløken vil bli teke inn på overføringstunnelen og såleis bli tørrlagde nedanfor inntaket.

Det vil bli teke ut tunnellmasse i storleiken 1.150.000 kbm som vil bli fordelt på 4 tippar; 100.000 kbm ved Hjartsjødammen, ca 300.000 kbm ovanfor Skårnes, ca 350.000 kbm ved Upptigåi og ca 400.000 kbm i kraftstasjonsområdet ned mot Skogsåi.

For vidare opplysningar om vassføring m.m. viser eg til rapport frå Bent Brandtzæg, Telemarksforsking (in prep.).

4. Fisk.

4.1 Registreringar i Hjartdøla med Vesleåi og Skorva.

Det er fiska med prøvegarn 2 stader; i Skogtjønna ved Skårnes og i Åmotshølen der Skogsåi og hjartdøla møter kvarandre. Garnfisket er på grunn av stor vassføring sommaren 1998 og 1999 avgrensa til desse stadiene.

Det er nytta botngarn av spun nylon, 1,5 m djupe og 25 m lange. I Skogtjønna blei det nytta 5 garn, med moskeviddene 21, 26, 29, 35 og 39 mm. I Åmotshølen blei det nytta 3 garn; 26, 29 og 35 mm.
Det blei registrert vekt, lengde, kjønn og gytestadium. Fiskemagane blei lagt i plastposar og frose ned for seinare analyse. For å finne alderen på fisken blei det teke skjellprover og otolittar. Veksten til fisken er rekna tilbake til lengde ved slutten av fyrste vinteren, andre vinteren osv. Dette er gjort ved bruk av Lea/Dahl sin formel $l_1/l_2 = L_1/L_2$ (Jonsson og Maizow 1978), som baserer seg på at det er proporsjonalitet mellom fisken si lengde (L) og skjellradius (l).

Kondisjonen er rekna ut etter Fultons formel $K = 100V/L^3$ (Jensen 1984), der V er vekta i gram og L er lengda i cm. Middels feit fisken har ein kondisjonsfaktor K mellom 0,95 og 1,04.

Det er særleg lett å undervurdere tettheten av yngel, særleg tidlegare på sommaren. Denne gruppa blir derfor ofte ikkje rekna med under slike vurderingar (Bohlin 1984). Svært mange av fiskeungane stryk med fyrste leveåret, og mengda av yngel betyr derfor ofte mindre for produksjonen av ungfisk på ein gitt elvestrekning (Bremset et al 1993).

For å korrigere for mogleg undervurdering er det nytta Bohlin sin formel $Y=T/(1-[(T-C_1)/(T-C_2)])^3$. Y er her total tetthet av fisk, T er lik total fangst og C_1 og C_2 er fangst ved fyrste og tredje forsøk (Bohlin 1984).

Ved bruk av dykkar med tørrdrakt og surstoffapparat er hølen nedanfor Omnesfossen undersøkt i gytetida med tanke på funn av laks og storaure som skal gyte. Fisk lengre enn 40 cm blir her rekna som storaure.

Elva er delt inn i ulike avsnitt etter elva sin karakter. Det er her lagt vekt på mellom anna fysiske barrierar (fossar) og substrattype. For kvart avsnitt er vilkåra for gyting, oppvekst av småfisk, opphaldsstader om vinteren og opphald for større fisk vurdert.

For å undersøke omfanget av fiske er det sendt ut ca 30 spørjeskjema til gr unneigarar og andre personar som er kjende med fisket i området. Dei fleste av desse er senare følgde opp ved bruk av telefon. Ein har også kome i kontakt med fleire personar under feltarbeidet.

4.2 Resultat.

4.2.1 Hjartdola.

I Hjartdola er det registrert følgjande fiskeartar:
- Auk (Salmo trutta), ørekyt (Phoxinus phoxinus), ørekyt (Phoxinus phoxinus), ørekyt (Phoxinus phoxinus).
- Ål (Anguilla anguilla), tripigga stingsild (Gasterosteus aculeatus) og bekkeniauge (Lampetra planeri). Ørekyta har inntil vidare ikkje spreidd seg lenger oppover enn til Hanfoss. I Hjartdola finst det også sik (Coregonus lavaretus), roye (Salvelinus salvelinus) og røy (Salmo salar).

Tidlegare skal det også ha vore tryte i Hjartdola, men arten er ikkje blitt registrert under våre undersøkningar i vassdraget.

I Hjartdola viser prøvefisket ein markert skilnad i vekstforløpet hos fisk tekne nedanfor Hanfoss samanlikna med fisk ovanfor.
På begge stader var 50% av fisken gytemogen etter 3 somrar. I Åmotshølen var 1/3 av hofisken i lengdegruppe 25,1-30 cm i stadium 4, dvs. at fisken skal gyte same hausten. All fisk over 30 cm skulle gyte. Ved Skårnes skulle 75% av hanfisken og 40% av hofisken i lengdegruppe 20,1-25 cm gyte. All fisk over 25 cm skulle gyte.

Kondisjonsfaktoren var nokså lik på dei to stadene:

### Lengdegruppe	Skårnes	Åmotshølen
< 20 cm | 0,91 |
20,1-25 cm | 0,94 | 0,95
25,1-30 cm | 0,96 | 0,93
> 30 cm | | 0,96

Infeksjonsgraden med rundormen *Eustrongylus sp* var moderat. Denne parasitten ligg som ein raud og glatt makk inne i gule væskefylte cystar, som regel i bukhola på fisken. Ved Skårnes var 2 av 17 fiskar infisert med 1-2 cystar. I Åmotshølen var 5 av 15 infisert med 2-4 cystar.

4.2.2 Skorva.

Skorva kjem frå mellom anna Skårsetvatn og Vassendvatn og renn ned igjennom Skårdalen. Dalen er ganske frodig med ein del høgstaudevegetasjon. Elva er fyllt av stein med mange små kulpar innimellom. Den nedre
delen av elva opp imot det planlagte tunnellinntaket har ikkje større fall enn at fisk frå Hjartdola kan ta seg oppover. Dette gjeld ein strekning på ca 1 km.

Det er fiska med el-apparat 2 gonger; fyrste gong 23.8.1998 på ein ca 50 m lang strekning ovanfor og nedanfor E 134 og 6.8.1999 på ein ca 60 m lang strekning ca 350 m lenger oppe. Dei strekningane som er avfiska synes representativ for elva.

Fyrste prøvefiske 23.8.1998.
Det blei fanga i alt 12 fiskar. I tillegg blei det observert 22 fiskar til. Det var bare aure. Bohlins formel (Bohlin 1984) gav på grunnlag av 3 gjennomfiskingar ein kalkulert tetthet på 49 fiskar eldre enn 1 sommar pr 100 m².

Empirisk vekst er funnen utifrå skjellprøver og lengde.

![Lengde fordeling 23.8.1998](image)

Obduksjon av fiskane viste at 3 av 6 fiskar i lengdegruppene 15-20 cm var kjønnsmogne. Den minste fisken på 15,5 cm hadde såleis rogn i stadium 4.

Andre prøvefiske 6.8.1999.
Det blei i løpet av fiske 2 gonger like etter kvarandre på same strekningen fanga i alt 65 aurar som alle var eldre enn 1 sommar gamle. I tillegg blei det observert fleire fiskar som bare var 1 sommar gamle (alder 0+). Arealet det blei fiska på var ca 125 m² vassflate.

På grunnlag av Bohlins formel er tettheten kalkulert til 70 aurar eldre enn 1 sommar pr 100 m². I tillegg kjem eit ukjent tal sommargamle aurar.

Det blei ikkje teke skjellprøver. Dei enkelte aldersklassene er tekne utifrå lengdefordeling i fangsten.

![Lengde fordeling 6.8.1999](image)

Figur **Feil! Ukjent bryterargument.** Lengdefordeling hos aure fanga 6.8.1999.

4.2.3 Vesleåi.

Vesleåi er ein bekk som renn eit godt stykke (ca 800 m) gjennom jorda på Lonar før han renn ut i Hjartdola ovanfor Eikermohylen. På denne strekningen liknar bekken for det meste ei open grøft. I den nedste delen er
bekken nokå tilvakse frå kantane og med mykje blautbotn. Ca 100 m ovanfor utløpet er bekken prøvefisken med el-apparat 6.8.1999. Her har botnen meir innslag av grus, men det var også noko slam. Under prøvefisken var bekken ca 1 m brei og 30-50 cm djup. Også her var det innslag av storr og gras i bekken

Prøvefiske 6.8.1999.
Fiske 3 gonger etter kvarandrem stutt tid imellom gav ein fangst på 68 aurar, 1 tripigga stingsild, og meir enn 50 bekkeniauger. Niaugene var frå 5 til 15 cm lange og dei fleste var nedgravne i mudderet. Ved å halde elektroden på fiskeapparatet på same stad noko lenger enn vanleg kom dei kravlande opp. Det minste var så tynne at dei smatt ut gjennom moskene på hoven. Det blei derfor ikkje gjort noko forsøk på bestandsestimering på denne arten.

Det blei fiska på ein strekning på ca 40m² vassflate. Tettheten av ungfisk blir med bruk av Bohlins formel (Bohlin 1984) 170 fisk pr 100 m².

Gjennomsnittleg lengde var 48 mm hos einsomra fisk (n = 31) og 95 mm hos 2 somra fisk (n = 4). Det blei ikkje fanga fisk større enn 102 mm. Stingsilda var 59 mm lang.

Heddøla.

Trass i ein halv times dykking blei det ikkje registrert verken fisk eller gytegroper i hølen. På grunn av perioden låg vassføring, mykje ørekyt og mangel på gode standplassar for større fisk er det mykje som tyder på at det er lite oppgang av storaure og laks frå Heddalsvatnet om hausten (Tor Dubowski, Håvard Solhøi).

4.3 Vurdering av prøvefisket.

4.3.1 Hjartdøla.

Garnfisket blei gjort under ein periode der SKK etter avtale skulle stenge kraftverket. Det visa seg likevel at det tok ganske lang tid frå stasjonen blei stengt til vassføringa var redusert. Dette førte til at vatnet sank nokå kraftig i løpe av den natta garna var ute. Dette kan ha påverka fangstefektiviteten. I Åmotshølen gjorde straumen det vanskeleg å få plass til meir enn 3 garn. Det siste garnet blei fylt av mykje lauv og anna driv som kan ha redusert effektiviteten til garnet.

Resultatet av prøvefisket viser at auren i Hjartdøla har ein kondisjon som må reknast som normal for elfeves. Veksten er ganske god (5-6 cm) dei 3 fyrste somrane. I Åmotshølen var mykje av fisken eldre og større enn ved Skárnes. Ved Skárnes er elva med unntak av de vesle tjønna nokå homogen og stilleflytande. Tettheten av fisk på denne strekningen synes å vera jamm og god. Vekstutvikling og alder ved kjønnsmogning er karakteristisk for tette til overbefolka bestandar.

Fisken i Åmotshølen viser mykje av dei same karaktertrekk som fisken ved Skárnes dei 4 fyrste somrane. Men Åmotshølen hadde også ein innslag av større og eldre fisk med ein anna vekstmønster. På denne strekningen er det ørekytte, som fungerer som ein næringskonkurrent for yngre fisk og som for for stor fisk. Lenger opppe synes Hanfossen å vera ein vandringshinder som hindrar vidare etablering av ørekytte og som også deler aurrepopulasjonane i elva.

Åmotshølen er ein av dei største hølane på ein strekning som elles byr på få opphaldsstader for større fisk. Det er derfor naturleg at større fiskar skal seia seg å gå i slike hølar. Samlinga av fleire store fiskar kan også ha samanheng med gytetida, som vanlegvis er ute i slutten av oktober. Det er kjent at dei største fiskane kan ta til å vandre mot gytepopulasjonen lengre før gyting. Også ovanfor Hanfoss er det meldingar om fangstar og observasjonar av stor fisk (1-2 kg). Det er helst på våren at ein kan få slik fisk. For enkelte av fiskane er det meldt om raud kjøttfarge. Dette kan tyde på at det her er tale om fisk som har slept seg ned frå Hjartsjø.
4.3.2 Skorva.

Lengdefordelinga tyder på at fisken i alderen 1+ er i lengdegruppa 8-10 cm, medan dei som er 1 sommar eldre (2+) ligg i lengdegruppa 13-15 cm. Dette ligg noko under dei verdiane som blei registrert lenger ned i elva året før. I løpet av den tredje sommaren har fisken vakse ca 5 cm. Dette må reknast som tilfredsstillande.

Resultatet av prøvefisket viser at tettheten av ungfisk må vurderast som særs god. Muniz et al (1997) oppgjev til samanlikning ein tetthet på 25 indivit pr 100 m² vassdekt elv som ein middelverdi for norske vassdrag. Over 50 eldre ungfisk (> 1+) av aure pr 100 m² er vanleg akseptert som høg tetthet (Berger et al 1997).

Fiskebestanden i Skorva har i tillegg til ungfisk også innslag av stadeigen gytefisk. Ein må vidare rekne med at fisk vandrar opp frå Hjartdola for å gyte. Skorva må i alle hove reknast som eit viktig rekrutteringsområde for fisk til Hjartdola.

4.3.3 Vesleåi.

Fisket viser at Vesleåi på denne strekningen hadde ei n særs høg tetthet av ungfisk. Beverdammar lenger opp i bekkken kan kanskje gje standplassar for større fisk, men elles ser det ut til at Vesleåi er eit reint gyte- og oppvekstområde for fisk frå Hjartdola. Jordbruket omkring er tydelegvis med på å gjera bekken produktiv.

Bekken er vidare ein typisk biotop for tripigga stingsild, som bygger reir og har ei form for yngelpleie. Dette krev innslag av noko vegetasjon.

4.3.4 Heddøla.

I Heddøla fann Solhøi (1992) at tettheten av aure og laks på dei fleste stasjonar var lågare enn i dei fleste andre lakseførande elvar. Dette galdt særlig fisk eldre enn 1 år (1+). Han sette dette i samanheng med mangel på steinar til skjul for større fisk og den store tettheten av ørekyt som han også registrerte. Næringskonkurranse med ørekyt meinte han også var grunnen til at ve ksten til aureungane frå Heddøla var så dårlig, særlig det fyrste året.

Ei undersøking av gytebestanden av laks og storaure i Tinnåa (Heggenes og Dokk 1997) konkluderte med at bestanden av storaure i Heddalsvatnet neppe talde meir enn 2-300 individ. Storaure var her definert som fisk større enn 40 cm eller 0,75-1 kg. Frå 1988 til 1997 blei det sett ut 200000 yngel av laks og 70000 yngel av aure i Telemarksvassdraget. Den årlige oppgangen av laks i Skotfoss skal ikkje ha vore meir enn 100-300 individ. Heggenes og Dokk meinte at den naturlege gytinga av laks i Tinnåa var helt ubetydeleg.

Årsaken til at me ikkje fann fisk oppunder Omnesfossen kan derfor vera:
1. At laksen ikkje kjem opp i denne delen av Telemarksvassdraget og at storaure bestanden i Heddalsvatnet er liten.
2. At Heddøla på grunn av periodis svært låg vassføring kombinert med elveforbyggingar og tette førekomstar av ørekyt og gjelede byr på dårlige vilkår for ei eiga stamme av storaure.
3. At tidlegare oppvandra fisk hadde trekt seg attende når kraftstasjonen blei stengd og vassføringa gjeekk ned.
4. At det også kunne gå opp fisk etter registreringa 20.oktober.

Dei 3 fyrste årsakene held me for å vera dei mest sannsynlege. Dette blir underbygd av samtaler med Håvard Solhøi og Tor Dubowski. Det skal årlig i april/mai bli teke noko storaure på stong i nedre delar av elva opp til forbi flyplassen. Men dette er aure som ikkje ber preg av å ha stått på elva gjennom vinteren.

4.3.5 Generelle biotopkrav for aure i elv.

Gyting.

Auren produserer i størleiken 1500-2200 rognkorn pr kg fisk (Borgstrøm 1990). Naturleg elvegrus med steinar varierande mellom 0,5 og 10 cm i diameter vil vanlegvis vera det substratet som vil gje den mest stabile
dekninga av rognkorna og god tilførsel av oksygen. Under slike tilhøve kan 80-90% av rogna overleve fram til klekking. I Gråelva, Nord-Trøndelag, fann Jonsson og Jonsson (1997) at middels grov grus (1,7-6,4 cm) var det som blei mest nyttu til gyting. Gyteområda ligg vanlegvis djupare enn 0,2 m, og vassføringa bør ligge mellom 0,2 og 0,9 m/s (Eie et al 1994).

Oppvekstområde.

Stein i storleiken 6-25 cm synes å vera den mest bruka botntypen for ungar av auro og laks (Heggenes og Dokk 1995). I Suldalslågen syntes auroaunen å like seg best på 20-45 cm djup, medan 10-15 cm blei for grunt. Om sommaren, når vatnet blir varmare, blir også fisken meir tolerant overfor ulike djup og straum.

Overvintringsområde.
Valet av opphaldsstad om vinteren varierer med storleiken på fisken. Dei største aurane gjeng om dagen i stimar i dei djupe, stilleflytande delane av elva og er generelt meir aktivt enn dei små. Dei mindre fiskane (<25 cm) held seg på strekningar med meir stryk og vil ved temperaturar under 5 grader stå gøymt i holom mellom steinar og i vassvegetasjonen (Eie et al 1994). Tilgang på gode vinterområde kan ofte vera ein begrensande faktor for laksefisk (Heggenes og Dokk 1995).

Næringssøk.
Om nettene gjeng både store og små aurar på næringsøk i grunne, stilleflytande delar av elva (Heggenes og Dokk 1995). I slike område kan fisken spare energi sjølv om han er aktiv. God tilgang på slike område (kulpar, bakevjer, elvekantar) er viktig, i nær tilknyting til areal med grovt substrat (strykområde) der fisken kan gøyme seg om dagen.

Drv (alloktont materiale) er den dominerande næringa for aure på elv (Heggenes og Dokk 1995). Det er generelt påvist ein positiv samanheng mellom vassføring og mengda av driv (Bremsset et al 1993). I stryk er vatnet oksygenrikt og dette er derfor generelt viktige vassføring for produksjon av næringsdyr. Straum i intervallet 0,5-1 m/s er rekna som optimalt for mange artar (Eie et al 1994). Den fyrste delen av elva ut ifrå ein innsjø er særleg rikt på driv, spesielt knottlarver og nettspinnande vårfluglarver.

Temperatur og vassføring.

Høg temperatur om vinteren, gjerne i samband med vinterkjøring av kraftverk, gjev større forbruk av energi og dermed dårligere kondisjon om våren (Saltveit 1997). Veksten om forsonnaren er vanlegvis den beste, og derfor kan forseinka vårflaum vera uheldig. Magasina blir som regel tappa frå djupare lag, som om vinteren kan gje ein overtemperatur ut frå kraftverket på 1-2 grader. Om sommaren vil slik tapping føre til temperatursenking i vassdraget. Ved variert kjøring av Sundsbarn kraftverk om sommaren er det i Flatdalselva registrert kraftige korttidsvariasjonar (10-12 grader, Eie et al 1994).
I uregulerte vassdrag er vassføringa vanlegvis låg om vinteren. Ved låg temperatur er sømjeevna til fisken kraftig redusert og han er derfor sterkare utsett for utspytning. For yngel so nettopp har absorbert plommesekken er kritisk vassfart omkring 0,10-0,25 m/s (Saltveit 1997). Aureunger større enn 4-5 cm kan tole ein straum på meir enn 0,5 m/s (Jonsson og Jonsson 1997). Stor vintervassføring kan også gje auka utvasking av organisk materiale og dermed dårligere villkår for botndyr (Heggberget et al 1999).

Låg vintervassføring er ofte minimumsfaktor for vegetasjon i vatn. Reduserte flaumar i kombinasjon med tilstrekkeleg sommarvatn kan gje mykje tusenblad og krypsiv, som kan endre dei økologiske tilhøva i elva i uheldig retning (Eie et al 1994).

4.3.6 Vilkåra i Hjartdøla.

Reguleringa i 1958.

Før Hjartdøla kraftverk kom i 1958 var vassføringa prega av minst vassføring om vinteren og ein kraftig flaumtopp om våren. Dette er vanleg for uregulerte norske vassdrag. Syklus en til dei fleste artane i elva er tilpassa dette. Etter reguleringa har elva hatt ein høgare temperatur om vinteren. Det kan dreie seg om 1-2 grader. Om sommaren har vatnet på grunn av redusert vassføring ofte vore varmare enn før. Men ved ekstra kjøring av kraftverket blir kaldt vatn frå botnen av magasina kjørt ut i Hjartsjø og vil i løpet av næraste dogeret ha senka temperaturen betydeleg også vidare nedover i elva. Slik endring i vassføring over stutt tid er ofte uheldig. Dette er kjent mellom anna frå Suldsalslågen (Økland og Økland 1995).

Om sommaren har den uregulerte delen av nedbørfeltet stått for eit tilsig som i middel har vore ca 5 kbm/s. Mykje av dette vatnet kjem ifrå Lifjellområdet og er prega av surare vann enn det som kjem vestifrå og frå Skårdalen.

Dei djupe hølane er mindre påverka av endra vassføring. Men på lange strekningar av elva er det lite av slike hølar. I delar av elva er det i tillegg gjort ein del utrettning og forbygning langs kantane for å hindre flaum over dyrka mark. Mykje av dette arbeidet er gjort etter storflaumen i 1987. Slike strekningar har i dag liten verdi for fisken, anna enn som gyteområde. Andre stader har elva fleire lop, som ved Lonarøyen, utføret av Skorva, nedanfor Mosbø og ved Omnes og Davidsøy. Her vil endring i vassføring vera meir merkbar.

Dei enkelte elvestrekningane.

Dei enkelte elvestrekningane er her vurdert med omsyn til vilkåra for fisk. Inndelinga i seksjonar gjeng fram av vedlagte kart.

Hjartsjå - Kvisla (seksjon A).

Botnen i elva er dominert av rullestein i storleiken 10-50 cm. Kantane har for det meste tett oreskog med innslag av gran. Strekningen synes å ha god tilgang på driv og godt med skjul for ungfisk. Men mangel på større kulpar og straumbrytarar reduserer vilkåra for fisken. Redusert vassføring vil kunna gjera det lettere for ungfisk å stå der, men reguleringa vil også gje betydeleg redusert tilførsel av næringsstoff i form av driv frå Hjartsjå.

Kvisla - Vestre Skårnes (seksjon B).

Elva blir her meir stilleflytande og botnen varierer frå grov grus til sand. Elva har mange stader nokså likt djup over heile elvetverrsnittet. Innslag av lager og matte med hesterumpa og anna vassvegetasjon gjer at det her står ein god del fisk. På nedre del av strekningen har forbygging og utrettning av kantane redusert vilkåra for fisken.

Ved at Vesleåi blir ført inn på tunnellen til kraftstasjonen vil denne bekken bli ubrukbar som gyteområde og som oppvekststad for ungfisk. Bekken utgjer i dag også ein viktig biotop for niauge og stingsild.

Vestre Skårnes - Hanfoss (seksjon C).

Hanfoss - Liahølen (seksjon D).
Denne strekningen er relativt urørt. Mykje av elva er her relativt einsarta, med eit relativt breitt løp med mykje stein. Enkelte fine fiskehølar i øvre del av strekningen. God kantskog av gråor.

Som i øvre del av elva er det her viktig å etablere bunar og straumkondensatorar som samlar elveløpet og gjev ein del djupare kulpar. I tillegg bør det etablerast ein del mindre tersklar for å sikre vasstanden i hølane.

Liahølen - Omnesfossen (seksjon E).
På strekningen Liahølen - Leirhølen er det her gjort forbygging og utretting av elva, fjerning av kantvegetasjon og oppreinsking av elveløpet. Det meste av dette er gjort på slutten av 1980-talet og har vore sær uheldig for fisken i elva. Bortsett fra stader der elvekanten er av grov stein, har fisken her lite å gøyme seg i. Frå Leirhølen og nedover blei det under feltarbeidet registrert mykje ørekkyt. Denne karpefisken et aurorogn og er ein sterk konkurent til småauren om næringer i elva.

På strekningen Liahølen - Leirholen ligg tilhøva til rette for å kunna få ein betre fiskebiotop. Det mest aktuelle tiltaket er utlegging av ein del stor stein og bunar med utgraving av kulpar i nedkant. Det bør setjast av areal for reetablering av kantskog, eventuelt ved påfylling av ein del jord og planting/stiklingar.

Omnesfossen - Heddøla (seksjon F).
Nedunder Omnesfossen er det ein stor høl, men det er ikkje konstatert om denne hølen eller strekningen på eit par hundre meter nedover til det planlagte utlopet av kraftstasjonen blir nytt eller gyteområde for storaure eller laks i dag. Det ser i det heile tatt ut til at Heddøla sin verdi som gyteområde for storaure er betydeleg redusert i samanheng med tidlegare (Håvard Solhøi, pers. medd.). Om våren i april/mai blir det teke ein del storaure i elva, med dette ser ut til å vera fisk som ikkje har stått der over vinteren (Tor Dubowski). Vaksen laks i denne delen av Skiensvassdraget er sær sjeldan (Heggenes og Dokk 1997).

Det er observert stor gjedde heilt opp mot Omnesfossen (Tor Dubowski). Slike eksempler vil også vera med på å redusere vilkåra for aunen.

4.4 Verknader av utbygging.
Ved vassføring i Omnesfossen i intervallet 7-42 m³/s vil vassføringa sommarstid (1.5.-30.9.) i Hjartdøla ligge på 2,5 m³/s i Omnesfossen, ca 2 m³/s før møtet med Skogsåi og under 2 m³/s lenger opp i elva. Vinterstid er minstevassføring i Omnesfossen sett til 1 m³/s og tilsvarande mindre oppover i Hjartdøla.
Ved vassføring i Omnesfossen under 7m³/s vil det ikkje gå vatn i tunnellen. Ved ekstra lite tilrenning frå lokale nedbørfelt kan det vera behov for å sleppe ekstra vatn ut ifrå Hjartsjå for å halde den minstevassføringa som er bestemt. Vassføringa i øvre del av elva kan da bli litt høgare enn elles.

I periodar med ekstra stor vassføring, i regelen ca 4 veker om våren, vil vassføringa vera som i dag minus det vatnet som gjeng i kraftstasjonen. Det vil i middel gje nærare halvering i høve til vassføringa i dag.

Redusert vassføring i sommarhalvåret vil gje reduserte produksjonsareal for fisk. Korleis dette vil slå ut reint konkreter det vanseleg på å skaffe seg noko realistisk inntrykk av. Bildemodellar frå Feste A/S gjev eit inntrekk av elva på enkelte strekningar frå Hanfoss og nedover ved minstevassføring. Midlare vassføring ved Hanfoss ligg nå på ca 13 m³/s, medan middelvassføring i Omnesfossen ligg på 21 m³/s (Samla plan, 1983). Minstevassføringa, som i sommarhalvåret er sett til 2,5 m³/s og i vinterhalvåret 1 m³/s refererer seg til vassmerke i Omnesfossen. Minste vassføring lenger opp i elva kan etter dette bli betydeleg mindre.

Produksjonen i vassdraget vil som regel stå i eit direkte tilhøve til kor stort nedbørfeltet er (Heggberget et al 1999). Den planlagte overføringa frå Hjartsjø vil i periodar redusere elva sitt nedbørfelt med ca 85%. Det vil anslagsvis vera tilfelle i vel 90% av året. I dag er den regulerte delen av nedbørfeltet ca 363 km² eller ca 62% av totalt nedbørfelt til Hjartdøla ved Omnesfossen. I sommarhalvåret blir vatnet frå denne delen av nedbørfeltet for det meste oppmagasineret for å kjøra gjennom Hjartdøla kraftverk om vinteren.

I øvre del av elva vil næringstilbodet i form av driv frå Hjartsjø bli sterkt redusert. Innspør i eit vassdrag, som Hjartsjø, er særsk vit vigtig for faunaen av botndyr nedstraums innsjøen (Heggberget et al 1999). Ved den overføringa som er planlagt vil denne positive vekselverknaden mellom innsjø og vassdrag mesteparten av året vera sett ut av funksjon.

Nede i Lonargrenda (seksjon B) vil redusert vassføring mange stader gje grunt vatn over heile elveløpet, med fare for tilgroing og auka oksygenforbruk som følgje av finkorn matom med innsloop av andre organismar. Dette vil redusere innslaget av høvlege gyteområde. Vesleåi, som er ein særprodusiv gyteklokk for auren i Hjartdøla, kan bli ubrukar som oppvekstopområde for aureygler. Reduserte gytevilkår vil likevel neppe bli den mest begrensande faktoren for fisken i området, da tilgangen på område for overvintring og næringssøk også kan bli betydeleg mindre.

Skorva, som er eit viktig gyte- og oppvekstopområde også for Hjartdøla, vil bli heilt øydelagt på grunn av tørrlegging i ein strekning på ca 1240 m frå utløpet i elva. Skadeomfanget kan auka ved lågare temperatur. For å redusere/eliminere faren for luftovermetning kan det etablerast tiltak som vil lufte vatnet før utslepp i elv.

Sprengstein i vatn og vassdrag, utvasking frå massedeponi, erosjon som følgje av graving i elveleiet og utsprøyling frå tunnelane har i fleire høve gitt skader på livet i vatn. Eit kjent eksempel er opninga av Brokke kraftverk i 1964 (Bjerknes et al 1996), der det i åra etterpå kom ein dramatisk reduksjon i populasjonen av bleke (ferskvasslaks) i Byglandsfjorden.

Sprengstein i vatn og vassdrag, utvasking frå massedeponi, erosjon som følgje av graving i elveleiet og utsprøyling frå tunnelane har i fleire høve gitt skader på livet i vatn. Eit kjent eksempel er opninga av Brokke kraftverk i 1964 (Bjerknes et al 1996), der det i åra etterpå kom ein dramatisk reduksjon i populasjonen av bleke (ferskvasslaks) i Byglandsfjorden.

Uorganiske partiklar har ein generell negativ verknad på vasslevande organismar (Sørensen 1998). Auka suspensjon av slike partiklar kan føre til blakkning av vatnet, redusert sikt og redusert næringsopptak, endring i vasskjemi og pH og tilsamling av gyteområde. Partiklane kan også føre til mekanisk skade på botndyr og
plankton og på gjellevev hos fisk. Filtrerande organismer er særlig utsette i så måte. Partiklar frå bl.a. bergartar er særlig skadelege. Dei minste partiklane er verst.

EIFAC (den europeiske innlandsfiskekommisjonen) gjev ein del retningsgjevande verdiar for kor høge partikkelkonsentrasjonar fisken kan tole, men dette er mynta på erosjonspartiklar frå jordbruksareal og elveleie og er basert på avkastning av fisket og ikkje grenser for skade på fisk. I vatn som normalt innehold 80-400 mg/l suspendert materiale vil det neppe kunna oppretthaldast noko godt fiske i følgje EIFAC (Sørensen 1998).

I tunnelmasser finst også restar av sprengstoff, som regel ammoniumnitrat i 5-6% oljeblanding og bly og aluminium frå temflysler (Sørensen 1998). Det er få rapportar om tilfelle der nitrogenomsætingar frå sprengstein har ført til negative verknader. I vatn med høg pH kan ammoniakk føre til giftverknader. Laksefisk skal reagere på konsentrasjonar ned mot 0,01 mg NH3/l.

4.4.1 Kompenserande tiltak.

Utlegg av stein.

Bruk av ein del stor stein (>50 cm) har i tillegg vist seg å kunna få den positive verknaden av eit slikt tiltak til å vare lengre (Eie et al 1995). Stein på opp til 1 kbm verkar forsterke på straumen og reduserer faren for nedslamming (NVE 1998). Plastring av elvekanter med stein har også gitt gode resultat. Dette må ikkje gå ut over kantvegetasjonen, som i tillegg til å gje eit vesentleg næringsbidrag også gjev skugge og regulerer temperaturen i vatnet.

Tersklar.
Bruk av terskeldammar er blitt eit dominerande kompensasjonstiltak i regulerte elvar. Slike dammar vil i fyrste rekke vera med på å halde vassnivået opp, sjølv ved minimal vassføring. I fleire tilfelle har slike dammar også gitt større eigenproduksjon av næringsdyr i vassdraget, til dømes i Hallingdalselva. Det meste av næringstilførslen i terskeldammene er dauðt organisk materiale som lauv og liknande, som her stansar og blir mat for botndyr. Utan kulpar og terskeldammar vil mykje av denne nærinna bli spylt ut utan å kunna nyttast av fisk (Eie et al 1995). Dei botndyra som først og fremst blir favorisert av terskelbygging er mindre artar som fjørmygg og knottlarver, medan steinfluger og døgnfluger helst blir betre på stryka i elva.

Terskeldammene vil i fleire høve verke som sedimentasjonsson om for finkorna partiklar. Dette kan føre til at delar av basseng frå den mindre brukbart som skjul og tilhald for ungfisk. Dette var mellom anna tilfelle i Skjoma (Nøst et al 1998), der det i løpet av 20 år bare var marginalt med område at med livsgrunnlag for ungfisk i terskeldammene. Det var stort sett bare i eit svært smalt belte langs terskelkrona at det funne tilvirket grovt substrat og gunstige straumtilhøve for fisk. Dette vil også resultera i Ekingedalselva (Eie et al 1995), der bestanden i terskeldammene var hovudsakleg eldre fisk.

Sedimentasjon av finkorna kan påvirke steinar i terskeldammene og påvirke fiskstruktura i elva. Slike dammar vil i fleire høve verke som sedimentasjonsson om for finkorna partiklar. Dette kan føre til at delar av basseng frå den mindre brukbart som skjul og tilhald for ungfisk. Dette var mellom anna tilfelle i Skjoma (Nøst et al 1998), der det i løpet av 20 år bare var marginalt med område at med livsgrunnlag for ungfisk i terskeldammene. Det var stort sett bare i eit svært smalt belte langs terskelkrona at det funne tilvirket grovt substrat og gunstige straumtilhøve for fisk. Dette vil også resultera i Ekingedalselva (Eie et al 1995), der bestanden i terskeldammene var hovudsakleg eldre fisk.

Bruk av terskeldammar er blitt eit dominerande kompensasjonstiltak i regulerte elvar. Slike dammar vil i fyrste rekke vera med på å halde vassnivået opp, sjølv ved minimal vassføring. I fleire tilfelle har slike dammar også gitt større eigenproduksjon av næringsdyr i vassdraget, til dømes i Hallingdalselva. Det meste av næringstilførslen i terskeldammene er dauðt organisk materiale som lauv og liknande, som her stansar og blir mat for botndyr. Utan kulpar og terskeldammar vil mykje av denne nærinna bli spylt ut utan å kunna nyttast av fisk (Eie et al 1995). Dei botndyra som først og fremst blir favorisert av terskelbygging er mindre artar som fjørmygg og knottlarver, medan steinfluger og døgnfluger helst blir betre på stryka i elva.

Terskeldammene vil i fleire høve verke som sedimentasjonsson om for finkorna partiklar. Dette kan føre til at delar av basseng frå den mindre brukbart som skjul og tilhald for ungfisk. Dette var mellom anna tilfelle i Skjoma (Nøst et al 1998), der det i løpet av 20 år bare var marginalt med område at med livsgrunnlag for ungfisk i terskeldammene. Det var stort sett bare i eit svært smalt belte langs terskelkrona at det funne tilvirket grovt substrat og gunstige straumtilhøve for fisk. Dette vil også resultera i Ekingedalselva (Eie et al 1995), der bestanden i terskeldammene var hovudsakleg eldre fisk.

Sedimentasjon av finkorna kan påvirke steinar i terskeldammene og påvirke fiskstruktura i elva. Slike dammar vil i fleire høve verke som sedimentasjonsson om for finkorna partiklar. Dette kan føre til at delar av basseng frå den mindre brukbart som skjul og tilhald for ungfisk. Dette var mellom anna tilfelle i Skjoma (Nøst et al 1998), der det i løpet av 20 år bare var marginalt med område at med livsgrunnlag for ungfisk i terskeldammene. Det var stort sett bare i eit svært smalt belte langs terskelkrona at det funne tilvirket grovt substrat og gunstige straumtilhøve for fisk. Dette vil også resultera i Ekingedalselva (Eie et al 1995), der bestanden i terskeldammene var hovudsakleg eldre fisk.

Bruk av terskeldammar er blitt eit dominerande kompensasjonstiltak i regulerte elvar. Slike dammar vil i fyrste rekke vera med på å halde vassnivået opp, sjølv ved minimal vassføring. I fleire tilfelle har slike dammar også gitt større eigenproduksjon av næringsdyr i vassdraget, til dømes i Hallingdalselva. Det meste av næringstilførslen i terskeldammene er dauðt organisk materiale som lauv og liknande, som her stansar og blir mat for botndyr. Utan kulpar og terskeldammar vil mykje av denne nærinna bli spylt ut utan å kunna nyttast av fisk (Eie et al 1995). Dei botndyra som først og fremst blir favorisert av terskelbygging er mindre artar som fjørmygg og knottlarver, medan steinfluger og døgnfluger helst blir betre på stryka i elva.

Terskeldammene vil i fleire høve verke som sedimentasjonsson om for finkona partiklar. Dette kan føre til at delar av basseng frå den mindre brukbart som skjul og tilhald for ungfisk. Dette var mellom anna tilfelle i Skjoma (Nøst et al 1998), der det i løpet av 20 år bare var marginalt med område at med livsgrunnlag for ungfisk i terskeldammene. Det var stort sett bare i eit svært smalt belte langs terskelkrona at det funne tilvirket grovt substrat og gunstige straumtilhøve for fisk. Dette vil også resultera i Ekingedalselva (Eie et al 1995), der bestanden i terskeldammene var hovudsakleg eldre fisk.
Det er all grunn til å vera redd for at terskeldammane skal kunna forsterke konkurransen frå ørekyt. Mellom anna i Hallingdal er det registrert utrulege tetthetar av ørekyt i slike dammar (Mykkeltvedt, pers. medd.). Dammane vil også kunna gje sterkare infeksjon av rundermen *eustrongylus sp.*, som har mellomvertar som favoriserast av redusert straum. Dette er mellom anna konstatert i Nidelva ved Åmli i samband med Åmfoss elvekraftverk (Bjortuft et al. 1978).

I enkelte vassdrag er *krypsiv* (*Juncus bulbosus*) blitt eit alvorleg problem i terskeldammar og andre stilleflytande delar av elva. Dette er mellom anna godt kjent frå Øtra i Setesdalen, der krypsiv har danna tjukke matter med opptil 3 m lange stenglar (Brandrud 1995). Krypsiv er ei plante som på grunn av mangel på karbon ikkje synes å trivast i vatn med høgare pH. I slikt vatn er det planter som *tusenblad* (*Myriophyllum alterniflorum*), som det er ein del av i Hjartdøla, som vil dominere. Problemet med uønskt vassvegetasjon vil derfor neppe vera så stort i denne elva.

Bruk av kulpar og steinryggar (bunar) ut i elva.

Tilgang på kulpar og store steinar er mange stader redusert som følgje av tiltak for fløting av tømmer og for å hindre flaum på dyrka mark. Bygging av straumkonsentratorar vil ofte gje graving og etablering av kulpar nedstraums. Slike tiltak har i enkelte tilfelle ført til at det er blitt meir enn 3 gonger så mykje fisk som før (Eie et al 1995).

Tiltak mot partiklar og restar av sprengstoff.

Det bør leggast vekt på å redusere utvaskinga av finknust masse så mykje som råd. Det bør derfor etablerast eit «skjørt» i nedkant av fyllingane som kan fange opp dei partiklane som blir vaska ut. Igangkjøring av kraftverket bør skje gradvis slik at ein slepp for stor utspying av tunnelstøv på ein gong.

4.5 Omfanget av fisket i Hjartdøla, Heddøla og Skogsåi.

I Hjartdøla, Vesleåi og Skogsåa med tilhørende sidebekker er det i ngen form for organisert fiske. Det er hovedsakleg den yngre garde som fisker langs denne delen av vassdraget. Stangfiske med mark, spinner og flue er de vanligste fiskemetodene. Det hender også at enkelte prøver seg med garn.

I Skogsåa består fangsten hovedsakleg av småørret som sjelden overstiger 100 g. Det hender at enkelte kilosfisker blir tatt, noe som oftest forekommer om våren. De store fiskene har sluppet seg ut fra ovenforliggende vann. Det er også muligheter til å få ål, røye og abbor i Skogsåa. Det hører til sjeldnehetene å få abbor i Tuddalsvassdraget, men i Sønnlandsvatnet er det relativt bra med abbor. Ørreten i Skogsåa er ofte infisert med innsollism, enkelte av informantene mener miler kan være årsaken til dette.

I Hjartdøla består den vanligste fangsten av småørret fra 50-200 g, flertallet er også her under 100 g. Videre er det ikke uvanlig å få enkelte ål på mark. På våren hender det at enkelte ørret helt opp i 1-2 kg blir tatt. Dette er fisk som høyst sannsynlig har sluppet seg ut fra Hjartsjåvatnet. I Hjartsjåvatnet er det i tillegg til ørret, røye, sik, abbor og ål.
4.6 Kjelder.

5. Elvemusling (Margaritifera margaritifera).

«En blodløs fisk innesluttet i et hårdt skall» (Erik Pontoppidan).

5.1 Generell bestandsstatus.

I Sverige har elvemuslingen forsvunne frå drygt 35% av dei vassdragar han var i fyrst på 1900-talet, og i bare vel 1/3 av dei levande bestandane er det konstatert rekruttering (Erikson et al 1997).

I Norge er det kjent 340-350 vassdrag, elvar og bekkar med elvemusling (Dolmen og Kleiven 1997). Dei fleste finst i Trøndelag, Nordland og i Rogaland. Også i Norge er elvemuslingen blitt borte frå mange stader der han var kjent tidlegare. Den største nedgangen har skjedd i Agderfylka og Rogaland, der arten er blitt borte frå 89% resp. 100% og 43% av stadene (Dolmen og Kleiven 1996).

5.2 Krav til leveområdet.

Elvemuslingen finst fyrst og fremst i rennande vatn og i hølar med god vassgangstrøying. Normalt djup er 0,5-2 m med straumfart 0,1-0,5 m/sek. Ved 0,3 m/sek og meir er andelen unge muslingar nær null (Larsen 1997). Arten skyr område med høgt innhald av partiklar. Høgt innhald av humussyrer trivst han og dårleg med. I følgje Dolmen og Kleiven (1996) er restbestandane av elvemusling på Sørlandet funne på stader med pH>6 og >2 mg Ca/l.

5.3 Levevis.

Parasittstadiet er sær artsspesifikt, og sjølv om larvene kan feste seg på gjellene til fleire fiskearter, synes det bare å vera laks og aare som fungerer tilfredsstillande som vertsskap (Larsen 1997). Dette betyr at livsvilkåra for auren blir viktige også for elvemuslingen. Normalt vil neppe tettheten av aare vera nokon minimumsfaktor for rekruttering til bestanden av musling (Bjørn Meddell Larsen, pers. medd.). Det er i litteraturen nemnt at ein tetthet på rundt 1 ein- eller tosomra aare pr 100 m² skal vera tilstrekkeleg til å sikre arten tilstrekkeleg med vassfisk. Som vassfisk er det fisk i denne alderen som blir nyttå. Større fisk er som regel resistent mot larvene eller mot glochidiose, som denne parasittinfeksjonen blir kalla.

Dei fyrste 4-5 åra etter parasittstadiet lever muslingen nedgraven i substratet. I praksis fører dette til at muslingar mindre enn 20-30 mm er vanskelege å oppdage utan å grave i botnen. Også større muslingar kan vera vanskelege å oppdage. Mindre muslingar blir gjerne ikkje synlege før vassføringa er på det lågaste og temperaturen i vatnet er høg.

Ein veit lite om kva muslingen lever av, men næringa er truleg for det meste plantemateriale (plantoplankton). Mellom vassføring og tetthet av muslingar er det ingen eintydig samanheng. Ein skal likevel vera ekstra merksam på skader frå is og nedfrysing ved låg vassføring om vinteren (Bjørn Mejdell Larsen, pers. medd.).

5.4 Søk etter elvemusling.

Elva er delt i fleire avsnitt etter substratttype. Som grunnlag for inndelinga er det nytt ein modifisert Wentworth skala (tabell 1).

Tabell 1: Wentworth skala for inndeling av partiklar.

<table>
<thead>
<tr>
<th>Partikkelkategori</th>
<th>Storleik (mm)</th>
<th>Kode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blokk</td>
<td>> 256</td>
<td>1</td>
</tr>
<tr>
<td>Stor stein</td>
<td>65 - 256</td>
<td>2</td>
</tr>
<tr>
<td>Små stein</td>
<td>17 - 64</td>
<td>3</td>
</tr>
<tr>
<td>Grus</td>
<td>2 - 16</td>
<td>4</td>
</tr>
<tr>
<td>Sand, mudder</td>
<td>< 2</td>
<td>5</td>
</tr>
<tr>
<td>Fjell</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Iinnan kvart avsnitt er elva undersøkt på utvalde lokaliteter med vadebukse og vasskikkert. Metoden avgrensar søket til dei grunnare delane av elva. Tor Dubowski, Notodd, har med våtdrakt dykka over store delar av elva, spesielt på strekningen Vestre Skårnes - Mosbø og i området Rohølen - Omnesøy. Han har på den måten også fått med seg ein del av dei djupare hølane.

Innan dei ulike elveavsnitta er elva undersøkt ved å legge transek tvers over elva. Talet på muslingar er registrert i ei breidde på 1 m langs transektet. Andelen døde muslingar er også registrert. På dei stadene som hadde mest musling er eit tilfeldig utval på 15 stk tekne opp og målt før dei blei sett ut att. Følgjande mål blei tekne:

![Diagram av musling med metning for høyde, lengde og brei](image)

Det er uvisst korleis muslingane reagerer på bruk av elektrisk fiskeapparat. Slikt apparat er derfor ikkje nytt på dei stadene med mest musling. På grunn av ugustig vassføring blei det i mai ikkje samlane inn ungfisk der gjellene blei undersøkt før funn av glochidielarver. Det har til nå alltid blitt registrert fisk med larver på
lokalitetar med musling, og det er derfor liten grunn til å tru at ikkje gyting og utvikling av larver skulle skje også i Hjartdøla.

5.5 Funn av elvemusling.

Lokalitet 1. Kvisla.

Biotop: Avsnørt elveløp før samløp med hovudelva. 5-8 m breitt. Ovanfor og i bakkant av lita grusøy. Noko skugge frå oretre.

| Substrat: Grus (klasse 4). |
| Djup: 0,5 - 0,8 m. |
| Tetthet: Varierande, i gjennomsnitt frå 0,36 - 3,43 muslingar pr m². Største tetthet 8-10 muslingar pr m². |
| 48 og 27 muslingar pr minutt. |
| Døde: 3%. |
| Lengde: 63 - 97 mm, snitt 76 mm. |
| Høgde: 31 - 43 mm, snitt 40 mm. |
| Breidde: 22 - 34 mm, snitt 27 mm. |
| N = 32. |

Lokalitet 2. Eikermohølen.

Biotop: 15-20 m nedanfor hølen. Dyrka mark/beite.

| Substrat: Grus (klasse 4). |
| Djup: 0,5 - 1 m. |
| Tetthet: Største tetthet ca 50 individ pr m². 38 muslingar pr minutt. |
| Døde: 6%. |
| Lengde: 76 - 97 mm, snitt 88 mm. |
| Høgde: 37 - 50 mm, snitt 44 mm. |
| Breidde: 23 - 34 mm, snitt 29 mm. |
| N = 16. |

Lokalitet 3. Ved Skårnes.

| Djup: >90% av breidda >0,5 m (0,5 - 1,4 m). |
| 5 transekt: 0,26 individ/m². N = 19. |
| Døde: 36%. |

Lokalitet 4. Ca 100-200 m ovanfor bru.

| Substrat: Små stein (klasse 3). |
| Djup: 0,5-1 m. |
| 2 transekt: Ingen muslingar registrert. |

Lokalitet 5. Tamburhølen - Mosbø.

Biotop: Relativt grunn og lang høl, med steinbotn. Oreskog langs kantane.

| Substrat: Stein 10-50 cm med noko grus innimellom (klasse 3). Dei fleste muslingane sat på skuggesida, i den gravande (djupaste) delen av hølen. |
| Tetthet: Ca 8 stk/min. |
| Døde: < 5%. |
| Storleik: 60 - 90 mm. |

Biotop: Elva deler seg her i fleire løp. God kantskog av or.

| Substrat: Små stein med noko grus innimellom (klasse 3). |
Funn: Bra bestand av muslingar, særlig i enkelte av sideløpa. Minste musling 57 mm.

Lokalitet 7. Ovanfor Leirhølen.
Djup: >90% av breidda >0,5 m (0,5 - 1,2 m).
3 transekt: 0,1 individ/m². N = 6.

Lokalitet 8 Leirhølen.
Biotop: Ca 30 m nedanfor hølen. Dyrka mark med storførebeite. Liten kant med oreskog.
Substrat: Grov grus - småstein (klasse 4 - 3).
Djup: 2/3 av elvetverrsnittet > 0,5 m (0,5-1 m).
1. transekt: 0,53 individ/m². Lengde 60 - 92 mm. N = 16.
2. transekt: 2,96 individ/m². N = 74.

Lokalitet 9. Sauland sentrum.
Biotop: Grunn og brei høl med noko oreskog langs kanten.
Substrat: Småstein med noko grus innimellom (klasse 3).
Næring: Transekten 21 m. 2 ind/m² synes representativt for hølen. 29 ind/min i yttersving.
Størrelse: Varierande frå 70 - 120 mm. Største individ 163 mm. Minste individ 62 mm.
Døde: < 5%. Enkelte individ nyleg kasta på land. Enkelte individ opna.

Lokalitet 10. Davidsøy.
Biotop: Hølar med varierande straum. Relativt stillestående vatn på innsida av Davidsøy.
Substrat: Varierande. Småstein klasse med grus innimellom (klasse 3). Også innslag av blautare botn (klasse 5).
Funn: Spreidde individ, ca 40 stk totalt. Dei fleste 0,2-0,5 m frå land i yttersving. Også enkelte individ på stillare vatn i ein mindre dam med blautare botn.

Lokalitet 11. Omnesøy.
Substrat: Varierande (klasse 2 - 4). Finare substrat der muslingane sat (klasse 5).
Funn: Muslingane sat konsentrert i den djupare delen av hølen. Relativt sterk straum på overflata. Ca 3-400 individ totalt. Varierande størrelse, største 143 mm, minste 30 - 40 mm (ikkje målt!). Undersøkt av Tor Dubowski.

5.5.1 **Tidlegare funn.**

Nedanfor Lonar (Eikermohølen) skal det fram til midten av 60-talet ha vore så tett med musling at det var vanskeleg å gå på botnen utan å trø på dei.

Det er ei vanleg oppfatning at muslingbestanden gjekk kraftig attende frå midten av 60-åra og framover. I Lonargrenda var folk samde om å la muslingen vera i fred. Enkelte meiner bestanden må ha teke seg opp at dei seinare åra. Utbygging av Hjartdøla kraftverk (1958) med påfølgjande utspyling av finmateriale kan ha gitt bestanden ein knekk. Fleire er også oppptekne av uttlepp av silosaft og avrenning av gjødsel frå landbruksom som moglege forklaringar på at bestanden gjekk slik attende.
5.5.2 Tetthet.

Tettheten av musling varierer som ein måtte vente kraftig frå stad til stad i elva. Muslingane lever av å filtrere det som kjem drivande med straumen, og naturlege levstader blir derfor i nedkant av hølar og i framkant av grusøyrr og liknande. Skusse frå vegetasjon langs kantane er også ein fordel.

Botnsubstrat og straumfart er avgjørende for om muslingane greier å etablere seg. Da substratet i stor grad også er avhengig av straumen i elva, vil type botnsubstrat vera ein god parameter. Sideløp med mindre straum synes ofte å ha bra med musling.

Muslingane kan vera ujamt fordelt sjølv om biotopen tilsynelatande er homogen. Det er under feltarbeidet funne muslingar så grunt som på ca 0,2 m djup.

Førekomsten i dei ulike delane av elva er vurdert slik:

<table>
<thead>
<tr>
<th>Strekning</th>
<th>Funn</th>
<th>Vurdering</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Hjartsjå - Lonarøya</td>
<td>Ingen</td>
<td>Mangel på finare substrat til å grave seg ned i.</td>
</tr>
<tr>
<td>D. Hanfoss - Liahølen</td>
<td>I hølar på heile strekningen. Lengde 6 - 10 cm.</td>
<td>Enkelte stader med relativt god tetthet. Lite inngrep.</td>
</tr>
<tr>
<td>F. Åmotshølen - Omnesfoss.</td>
<td>Spreidde funn heile strekningen. Tett førekomst ved Omnesøy, der det også skal vera gjort funn av små og store individ (4 - 14 cm).</td>
<td>Brei elv med mykje rullestein fører til at førekomstane av musling stort sett er avgrensa til hølane.</td>
</tr>
</tbody>
</table>

5.5.3 Alder og rekruttering.

Alderen kan registrerast ved teljing av vintersoner i skalet, dvs. mørke ringar. Dette kan gje brukbare resultat for yngre individ opptil 30-40 år gamle eller 95 mm lengde.

Lengda på muslingane skulle tyde på at dei minste på ca 60 mm må vera ein stad mellom 15 og 20 år gamle. At det ikkje er registrert muslingar mindre enn 50 mm kan tyde på at det ikkje er skjedd noko rekruttering dei siste 10 åra (Larsen og Karlsen 1997). I følgje Larsen (pers. medd) skal det vera rimeleg lett å oppdage muslingar ned til 20-30 mm store. I si undersøking av Bøelva med gummi båt fann heller ikkje Lande et al (1997) muslingar mindre enn 60 mm. Dette kan tyde på at fråveret av funn mindre enn 50 mm likevel kan skuldast at dei er vanskeleg å oppdage snarare enn at dei ikkje finst.

I Fulldøla var muslingane i april nesten heilt nedgravne i substratet. Dette galdt også større individ på 14-15 cm (Tor Dubowski). Ved søk på relativt høy vassføring og kjøleg vatn i juli var dei minste muslingane i Hjartdøla (ca 6 cm) noksa godt nedgravne, medan dei største sat omlag heilt oppå botnen. Ved dykking ved Omnesøy på låg vassføring og høg temperatur skal det vera sett individ på 3-4 cm, men dei er ikkje blitt mält (Tor Dubowski).
I dei tettaste koloniane av musling er det også søkt etter nedgravne individer ved å grave på botnen, velte steinar osv. Det lykka kikje å finne andre muslingar enn dei som ein relativt enkelt kunne oppdage utan graving. Merkeforsøk utført på bestandar i Osloområdet har vist at deler av populasjonen kan ligge heilt nedgraven også om sommaren. Ved stadige søk vil ein kunna finne yngre og yngre individer (Dag Dolmen, pers. medd.).

I øvre del av elva er muslingbestanden relativt homogen med tanke på størrelsen (lengde 60 - 100 mm). I nedre del av elva er det også funne enkelte store eksempler, med største lengde 163 mm. Mitt inntrykk er at her er også gjennomsnittslengda større enn i øvre del.

5.5.4 **Verneverdi.**

Statens Naturvårdsverk (Erikson et al 1997) har gjort framlegg om bestemte kriterium for vurdering av verneverdien til muslingpopulasjonar. Det blir gitt 0-6 poeng innanfor kvart kriterium. Samla poengsum plasserer populasjonen innanfor 3 klasser av verneverdi:

|----------|---------------------------|-------------------------------|-----------------------------------|

Klasse I: Verneverdig (1-7 poeng).
Klasse II: Høg verneverdi (8-17 poeng).
Klasse III: Særskilt verneverdi (18-36 poeng).

Figur Feil! Ukjent bryterargument. Kriterium og poengklasser for vurdering av verneverdien til ein populasjon av elvemusling. Frå Erikson et al. (1997).

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>1p</th>
<th>2p</th>
<th>3p</th>
<th>4p</th>
<th>5p</th>
<th>6p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Populasjon (i tusen)</td>
<td><5</td>
<td>5-10</td>
<td>11-50</td>
<td>51-100</td>
<td>101-200</td>
<td>>200</td>
</tr>
<tr>
<td>2. Gjennomsnittstetthet (ind./m²)</td>
<td><2</td>
<td>2-1-4</td>
<td>4,1-6</td>
<td>6,1-8</td>
<td>8,1-10</td>
<td>>10</td>
</tr>
<tr>
<td>3. Utbreiing (km)</td>
<td><2</td>
<td>2,1-4</td>
<td>4,1-6</td>
<td>6,1-8</td>
<td>8,1-10</td>
<td>>10</td>
</tr>
<tr>
<td>4. Minste funn (mm)</td>
<td>>50</td>
<td>41-50</td>
<td>31-40</td>
<td>21-30</td>
<td>11-20</td>
<td><10</td>
</tr>
<tr>
<td>5. Del muslingar <20 mm (%)</td>
<td>1-2</td>
<td>3-4</td>
<td>5-6</td>
<td>7-8</td>
<td>9-10</td>
<td>>10</td>
</tr>
<tr>
<td>6. Del muslingar <50 mm (%)</td>
<td>1-2</td>
<td>6-10</td>
<td>11-15</td>
<td>16-20</td>
<td>21-25</td>
<td>>25</td>
</tr>
</tbody>
</table>

Bestanden av musling i Hjartdøla finst på ein strekkning av ca 11 km. Innanfor denne strekningen varierer tettheten sterkt. Registeringar på representativ elveavsnitt tyder på ein gjennomsnittstetthet på rundt 1 indivi pr m². Med 10 m gjennomsnittlig breidde på muslingførande elveløp vil dette gje ein populasjon på ca 110000 individer. Det er ikkje registrert musling under 50 mm. Dette skulle utifrå tabellen ovanfor gje 15 poeng og vurderinga høg verneverdi for forekomsten i Hjartdøla.

Figur Feil! Ukjent bryterargument. Kjende forekomstar av musling i Telemark.

<table>
<thead>
<tr>
<th>Elv</th>
<th>Kommune</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hjartdøla</td>
<td>Hjartdal</td>
<td>Ca 100000 individ.</td>
</tr>
<tr>
<td>Heddøla</td>
<td>Notodden</td>
<td>Sprisend individ, avtakande mot utløpet.</td>
</tr>
<tr>
<td>Sauarelva</td>
<td>Notodden/Sauherad</td>
<td>?</td>
</tr>
<tr>
<td>Fulldøla</td>
<td>Notodden</td>
<td>Få (30-40) individ, ingen rekruttering.</td>
</tr>
<tr>
<td>Boelva</td>
<td>Bo/Sauherad</td>
<td>Tidlegare stor bestand, nå redusert.</td>
</tr>
<tr>
<td>Horteelva</td>
<td>Bo</td>
<td>?</td>
</tr>
<tr>
<td>Eikjelva</td>
<td>Bo/Nome</td>
<td>Liten bestand.</td>
</tr>
<tr>
<td>Eidseid/Straumen</td>
<td>Nome</td>
<td>?</td>
</tr>
<tr>
<td>Skovevassdraget</td>
<td>Nome</td>
<td>?</td>
</tr>
<tr>
<td>Storelva</td>
<td>Drangedal</td>
<td>?</td>
</tr>
<tr>
<td>Brødsvassdraget</td>
<td>Drangedal</td>
<td>Utdøyd?</td>
</tr>
<tr>
<td>Øvre og Nedre Tokeelv</td>
<td>Drangedal</td>
<td>?</td>
</tr>
<tr>
<td>Bolvikelva</td>
<td>Bamble</td>
<td>Utdøyd?</td>
</tr>
<tr>
<td>Åbyelva</td>
<td>Bamble</td>
<td>?</td>
</tr>
</tbody>
</table>

Bestanden i fleire av desse elvane synes å bestå av nokre få gamle individer.
I Bøelva talde Lande et al (1996) 872 levande muslingar på ein strekning av 15,5 km frå Herrefossen til Oterholt. Dette er rekna som den beste delen av elva for musling. Den totale bestanden i denne delen av elva blei vurdert til 2300 +/- ca 500 individ eller 0,003 individ pr m². I dei delane av elva med størst tetthet var det registrert 1,5 individ pr løpemeter eller 0,03 individ pr m². Mykje tyder derfor på at muslingbestanden i Hjartdøla kan vera ganske unik i Telemark.

5.6 Verknader av regulering.

Marin grense i Sauland ligg på ca 150 m, eller nær opp til Hjartsjø sitt nivå. Før landhevinga tok til for alvor var det derfor mogleg for muslingen å ta seg opp i Hjartdøla på naturleg vis som larver på gjellene til laksefisk.

Vassprøver frå Hjartdøla viser stabilt høg pH og god vasskvalitet. Samanlikna med Fulldøla, Tinnåa og Skogsåi synes Hjartdøla å vera mindre sur (tabell 10). Dei siste åra har likevel elva blitt noko meir påverka av uttlepp, noko som har ført elva ned frå beste til nest beste tilstandsklasse (Finn Johansen, Miljøvernavdelinga).

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Tid</th>
<th>Parameter</th>
<th>pH</th>
<th>Ca, mg/l</th>
<th>N, µg/l</th>
<th>Kjelde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utløp Hjartsjø</td>
<td>18.02.82</td>
<td>13.05.82</td>
<td>24.05.84</td>
<td>21.06.93</td>
<td>02.07.96</td>
<td>30.07.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,47</td>
<td>2,52</td>
<td></td>
</tr>
<tr>
<td>Omnes bru</td>
<td>01.07.85</td>
<td>21.06.93</td>
<td>02.07.96</td>
<td>30.07.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,97</td>
<td>1,70</td>
<td></td>
</tr>
<tr>
<td>Skogsåi</td>
<td>20.10.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mjella</td>
<td>20.10.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svigsåi</td>
<td>20.10.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Åsvelta</td>
<td>20.10.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timmelva</td>
<td>Okt. 98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fulldøla</td>
<td>Okt. 98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ved utbygging vil vassføringa i Hjartdøla i lange periodar vera dominert av den delen av nedbørfeltet som ikkje er nytta til vassdragsregulering, dvs. Lifjellområdet. Dei viktigaste sidebekkane frå dette området er Åsvelta, Mjella og Svigsåi, som alle har dårligare vasskvalitet enn det ein reknar muslingen må ha for å halde oppe ein livskraftig bestand. Dette vil også påverke vasskvaliteten i Hjartdøla i negativ retning.

Endringar av botnsubstratet med nedslamming og blakking av vatnet er andre verknader. Muslingar og andre organismer som lever av å filtrere vatnet for næringsmatter frå dekket med skjødt, er mest sårbar, særlig medan dei lever heilt nedgravne i sedimentet. Da vil ei tilslamming lett kunne føre til at oksygentilgangen blir for liten.

Glochidielarvene slepper seg av vertsfisken i perioden april - juni. Tida er avhengig av temperaturen. Farten på vatnet er ofte kritisk for etablering av larvene, og bør ikkje vera over 30 cm/s. I det regulerte vassdraget er temperaturen ved vintervassføring truleg 1-2 grader høgare enn vanleg. Dette kan stimulere til raskare utvikling av larvene og slepp frå vertsfisken på ei tid da vassføringa ennå er stor. Det skulle likevel vera å sjå varierte habitatar for musling i elva at det burde vera område som kunne tilfredsstille muslingen sine krav.

Redusert vassføring om vinteren ned til 1 m³/s ved Fossen kro og enda mindre ovanfor vil fyrst og fremst gje utslag i dei breiaste delane av elva. Dvs. i sidelløp (Mosø, Kvisla) og i nedre del av elva. I nedre del av elva er det på høg side og mange stader så mykje rokk og neste at det krysser dekket med skjødt. Muslingen kan oppnå det med vannføring på 0,1 m³, men er sårbar for ihelfrysing om vinteren.

Endringar av botnsubstratet med nedslamming og blakking av vatnet er andre verknader. Muslingar og andre organismer som lever av å filtrere vatnet for næringsmatter frå dekket med skjødt, er mest sårbar, særlig medan dei lever heilt nedgravne i sedimentet.
5.7 Kompenserande tiltak.

Dei uheldige verknadene av ei overføring til Omnesfossen kraftverk vil fyrst og fremst vera redusert tilgang på næring på grunn av redusert vassføring og redusert mengde av driv i elva. Bortfall av tilførsler frå Hjartsjø vil på same måte som for fisk vera negativt. Auka sedimentasjon og auka oksygenforbruk i den delen av elva som ikkje blir tørrlagt vil vera uheldig, særleg i høve til rekruttering av musling i vassdraget.

Steinsetting, graving av kulpar mm. er tiltak som vanlegvis krev kjøring og graving med gravemaskin i elva. I tillegg til å skade muslingane direkte ved å knuse dei mm. vil også oppkvervling av finpartiklar frå botnen kunne vera uheldig. Det er såleis viktig å unngå slikt i dei områda som har mest musling.

5.8 Kjelder.

Kontaktpersonar.
Tor Dubowski, Notodden.
Arne Lande, Høgskulen i Telemark, Bø.
Dag Dolmen, Universitetet i Trondheim.
Bjørn Mejdell Larsen, NINA, Trondheim.
6. **Bunndyr.**

6.1 *Generelt*

Bunndyr ble innsamlet 23. november 1998 på 7 stasjoner. Døgnfluelarver og steinfluelarver er artsbestemt så langt det var mulig, andre grupper er bestemt til høyere nivå.

6.2 *Metodikk*

Ved innsamling av bunndyr ble brukt den såkalte sparkemetoden. Dette er en halvkvantitativ metode. Det vil si at den gir et godt bilde av hvilke arter som er til stede og forholdet mellom dem, men den gir ikke et helt nøyaktig bilde av mengden av dyr på en lokalitet.

Sparkemetoden er utført på denne måten: Det brukes en finmasket hov med maskevidde 0,25 mm og åpning ca. 30 x 30 cm.. Man står i vadebukse med ryggen mot strømretningen og plasserer hoven på bunnen. Deretter sparkes og rotes det kraftig i bunnsubstratet. Eventuelle bunndyr virvles opp og strømmer inn i hoven. Ved lave strømhastigheter beveges hoven fram og tilbake for å fange opp dyrene.

På hver stasjon prøver man å virvle opp dyr fra et areal på totalt ca. 1 m², fordelt på de substrattyper som finnes på stasjonen.

Hoven med det innsamlede materiale slynges rundt for å fjerne mest mulig vann. Prøven overføres så til en plastpose, etiketteres og konserveres med rødsprit.

Ved bearbeiding skylles prøvene med vann og overføres til et hvitt plastfat. Alle dyr man ser i løpet av 0,5 time plukkes ut og legges i 70 % sprit.

6.3 Resultater

6.3.1 Oversikt

Totalt ble det samlet inn 1438 individer, hvorav omtrent halvparten var steinfluelarver og døgnfluelarver. Artsantall i de artsbestemte gruppene pluss antall resterende grupper gir et bilde av det biologiske mangfoldet på hver stasjon (se figur nedenfor). Mangfoldet ser ut til å være størst i de nedre delene av den undersøkte strekningen.

Figur Feil! Ukjent bryterargument. Oversikt over innsamlede dyregrupper i Hjartdøla og Skorva november 1998

<table>
<thead>
<tr>
<th>S</th>
<th>D</th>
<th>V</th>
<th>B</th>
<th>F</th>
<th>F</th>
<th>K</th>
<th>F</th>
<th>K</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>ø</td>
<td>å</td>
<td>i</td>
<td>l</td>
<td>å</td>
<td>t</td>
<td>n</td>
<td>j</td>
<td>l</td>
</tr>
<tr>
<td>e</td>
<td>g</td>
<td>r</td>
<td>l</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>o</td>
<td>æ</td>
<td>e</td>
</tr>
<tr>
<td>i</td>
<td>n</td>
<td>f</td>
<td>l</td>
<td>t</td>
<td>ø</td>
<td>n</td>
<td>l</td>
<td>r</td>
<td>g</td>
</tr>
<tr>
<td>n</td>
<td>f</td>
<td>l</td>
<td>e</td>
<td>o</td>
<td>r</td>
<td>k</td>
<td>t</td>
<td>m</td>
<td>g</td>
</tr>
<tr>
<td>f</td>
<td>l</td>
<td>u</td>
<td>r</td>
<td>r</td>
<td>s</td>
<td>e</td>
<td>y</td>
<td>r</td>
<td>g</td>
</tr>
<tr>
<td>l</td>
<td>u</td>
<td>e</td>
<td>/</td>
<td>m</td>
<td>t</td>
<td>l</td>
<td>g</td>
<td>y</td>
<td>r</td>
</tr>
<tr>
<td>u</td>
<td>e</td>
<td>r</td>
<td>l</td>
<td>e</td>
<td>e</td>
<td>b</td>
<td>g</td>
<td>l</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>r</td>
<td>a</td>
<td>r</td>
<td>m</td>
<td>e</td>
<td>u</td>
<td>v</td>
<td>r</td>
<td>n</td>
</tr>
<tr>
<td>r</td>
<td>a</td>
<td>i</td>
<td>e</td>
<td>v</td>
<td>e</td>
<td>k</td>
<td>r</td>
<td>e</td>
<td>k</td>
</tr>
</tbody>
</table>

1. Omnesfoss 55 105 18 6 3 2 6 10
2. Omneshølen 34 22 25 10 7 4 63 25 1 1
3. Leirhølen 53 42 41 5 128 5 32 6 2
4. Hanfoss ned 34 25 19 9 12 2 1
5. Skorva ut 78 49 10 1 3 3 1
6. Eikermoen 37 23 1 10 3 4 2
7. Sø. Hjartsjå 171 1 3 3 9 2

Antall arter og grupper (taxa) pr. stasjon

6.3.2 Steinfluer og døgnfluer
Det ser ut til å være flest steinfluer på stasjon 7 og flest døgnfluer på stasjon 1, men det er vanskelig å si dette sikkert på grunnlag av få prøver. Lokale variasjoner i tetthet kan gi misvisende tall. Generelt er imidlertid begge gruppene godt fordelt i vassdraget.

I Hjartdøla ble det med sikkerhet påvist 9 arter steinfluer og 6 arter døgnfluer. I Skorva ble det funnet 7 arter steinfluer og en døgnflueart. En steinflueart (P. meyeri) ble bare funnet i Skorvas utløp.

De artene som ble funnet samsvarer godt med det som er funnet i tidligere undersøkelser. Alle steinflueartene må regnes som typiske for store elver og bekker i landsdelen. Døgnfluen E. mucronata befinner seg nær vestgrensen for sin utbredelse i Norge (Spikkeland 1989).

2. Omneshølen

- B. fuscata
- B. rhodani
- Leptophlebia sp.
- Heptagenia sp.
- Eph. mucronata
- Eph. aurivillii
- Unbest. steinf.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Eph. mucronata
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
- S. burmeisteri
- P. meyeri
- A. borealis
- A. sulcicollis
- N. avicularis
- N. cinerea
- Leuctra sp.
- Eph. aurivillii
- Leptophlebia sp.
- Heptagenia sp.
5. Skorva ut

<table>
<thead>
<tr>
<th>Species</th>
<th>Bar Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. fuscata</td>
<td>Long</td>
</tr>
<tr>
<td>B. rhodani</td>
<td>Medium</td>
</tr>
<tr>
<td>Leptophlebia sp.</td>
<td>Medium</td>
</tr>
<tr>
<td>Heptagenia sp.</td>
<td>Short</td>
</tr>
<tr>
<td>Eph. mucronata</td>
<td>Short</td>
</tr>
<tr>
<td>Eph. aurivillii</td>
<td>Short</td>
</tr>
<tr>
<td>Ubest. steinf.</td>
<td>Medium</td>
</tr>
<tr>
<td>S. burmeisteri</td>
<td>Short</td>
</tr>
<tr>
<td>I. grammatica</td>
<td>Medium</td>
</tr>
<tr>
<td>D. nanseni</td>
<td>Short</td>
</tr>
<tr>
<td>Leuctra sp.</td>
<td>Short</td>
</tr>
<tr>
<td>N. cinerea</td>
<td>Short</td>
</tr>
<tr>
<td>N. avicularis</td>
<td>Short</td>
</tr>
<tr>
<td>A. sulcicollis</td>
<td>Short</td>
</tr>
<tr>
<td>A. borealis</td>
<td>Short</td>
</tr>
<tr>
<td>P. meyeri</td>
<td>Short</td>
</tr>
<tr>
<td>T. nebulosa</td>
<td>Short</td>
</tr>
</tbody>
</table>

6. Eikermoen

<table>
<thead>
<tr>
<th>Species</th>
<th>Bar Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. fuscata</td>
<td>Medium</td>
</tr>
<tr>
<td>B. rhodani</td>
<td>Short</td>
</tr>
<tr>
<td>Leptophlebia sp.</td>
<td>Medium</td>
</tr>
<tr>
<td>Heptagenia sp.</td>
<td>Short</td>
</tr>
<tr>
<td>Eph. mucronata</td>
<td>Short</td>
</tr>
<tr>
<td>Eph. aurivillii</td>
<td>Short</td>
</tr>
<tr>
<td>Ubest. steinf.</td>
<td>Short</td>
</tr>
<tr>
<td>S. burmeisteri</td>
<td>Short</td>
</tr>
<tr>
<td>I. grammatica</td>
<td>Short</td>
</tr>
<tr>
<td>D. nanseni</td>
<td>Short</td>
</tr>
<tr>
<td>Leuctra sp.</td>
<td>Short</td>
</tr>
<tr>
<td>N. cinerea</td>
<td>Short</td>
</tr>
<tr>
<td>N. avicularis</td>
<td>Short</td>
</tr>
<tr>
<td>A. sulcicollis</td>
<td>Medium</td>
</tr>
<tr>
<td>A. borealis</td>
<td>Medium</td>
</tr>
<tr>
<td>P. meyeri</td>
<td>Short</td>
</tr>
<tr>
<td>B. risi</td>
<td>Short</td>
</tr>
</tbody>
</table>
6.3.3 Vårfluer

Vårfluelarver er vanligst på de fire nederste stasjonene. Det er en større andel husbyggende arter på de roligere partiene enn der det er mer strøm.
6.3.4 Biller

Det ble bare funnet billelarver på de fire nederste stasjonene. Larvene kom fra to familier, Haliplidae og Helodidae. Dette er de billefamilien man gjerne finner i rennende vann.

![Diagram av antall billelarver pr. stasjon](image)

6.3.5 Fjærmygg

Det ble funnet flest fjærmygglarver på stasjon 2. Sett under ett var det lite fjærmygglarver i materialet.

![Diagram av antall fjærmygglarver pr. stasjon](image)

6.3.6 Fåbørstemark

Fåbørstemark er vanligst på stasjon 3. Disse markene ligner mye på vanlig meitemark, men noen er mye tynnere. Fåbørstemark finnes gjerne oftest der det er mye næring i vannet.
6.3.7 **Knott**
Det var mest knottlarver på stasjon 2 og 3.

6.4 **Vurdering av eventuell regulering**

Det ble ikke påvist sjeldne eller truede arter i undersøkelsen. Artsbildet ved denne undersøkelsen minner mye om det som ble funnet i 1988 (Spikkeland 1989). Vi kan derfor regne med at de fleste artene av steinfluer og døgnfluer som finnes i området er påvist.

Eventuelle lokale utslipp av næringsstoffer vil virke mer konsentret, dette påvirker også sammensetningen av bunndyrene.
Merk at forholdene for elvemuslingen ikke er vurdert i dette kapitlet.

6.5 Litteratur

